# libraries for data preprocessing import numpy as np import pandas as pd import pickle import gradio as gr ## lets load the model with open('loan-model.bin', 'rb') as f_in: dv, model = pickle.load(f_in) # Example function to preprocess the input def applicant_data(gender, married, dependents, education, self_employed, applicantincome, coapplicantincome, loanamount, loan_amount_term, credit_history, property_area): # Create a dictionary of the input features input_data = { 'Gender': gender, 'Married': married, 'Dependents': dependents, 'Education': education, 'Self_Employed': self_employed, 'ApplicantIncome': applicantincome, 'CoapplicantIncome': coapplicantincome, 'LoanAmount': loanamount, 'Loan_Amount_Term': loan_amount_term, 'Credit_History': credit_history, 'Property_Area': property_area } # Transform the input data using the pre-fitted transformer (e.g., DictVectorizer, OneHotEncoder) X = dv.transform([input_data]) return X # Function to make predictions def predict_loan_status(gender, married, dependents, education, self_employed, applicantincome, coapplicantincome, loanamount, loan_amount_term, credit_history, property_area): # Preprocess the input data input_data = applicant_data(gender, married, dependents, education, self_employed, applicantincome, coapplicantincome, loanamount, loan_amount_term, credit_history, property_area) # Predict using the model prediction = model.predict_proba(input_data)[:,1] # Post-process the prediction if needed # Assuming the model output is a single prediction value predicted_value = prediction[0] print(predicted_value) # Return verdict based on threshold if predicted_value >= 0.3: return f'Verdict: Good standing - Approved ({predicted_value:.2f})' else: return f'Verdict: Bad standing - Rejected ({predicted_value:.2f})' # Gradio interface # Gradio interface with improved input handling inputs = [ gr.Dropdown(choices=["Male", "Female"], label="Gender"), gr.Dropdown(choices=["Yes", "No"], label="Married"), gr.Number(label="Dependents", value=0), gr.Dropdown(choices=["Graduate", "Not Graduate"], label="Education"), gr.Dropdown(choices=["Yes", "No"], label="Self Employed"), gr.Number(label="Applicant Income", value=0), gr.Number(label="Coapplicant Income", value=0), gr.Number(label="Loan Amount", value=0), gr.Number(label="Loan Amount Term", value=360), gr.Dropdown(choices=[0, 1], label="Credit History"), gr.Dropdown(choices=["Urban", "Semiurban", "Rural"], label="Property Area") ] output_text = gr.Textbox(label="Loan Prediction") # Create the Gradio interface gr.Interface(fn=predict_loan_status, inputs=inputs, outputs=output_text, title="Loan Status Prediction").launch(share=True)