Spaces:
Runtime error
Runtime error
Create app.py
Browse filescreated an app file
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## libraries for data preprocessing
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
## libraries for training dl models
|
6 |
+
import tensorflow as tf
|
7 |
+
from tensorflow import keras
|
8 |
+
|
9 |
+
## libraries for pre-trained neural network
|
10 |
+
from tensorflow.keras.applications.xception import preprocess_input
|
11 |
+
|
12 |
+
## libraries for loading batch images
|
13 |
+
from tensorflow.keras.preprocessing.image import load_img
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
def get_y(o):
|
18 |
+
return [parent_label(o)]
|
19 |
+
|
20 |
+
## lets load the model
|
21 |
+
model = keras.models.load_model('xception_v1_15_0.812.h5')
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def maize_disease_classifier(image):
|
26 |
+
x = np.array(image)
|
27 |
+
X = np.array([x])
|
28 |
+
X = preprocess_input(X)
|
29 |
+
pred = model.predict(X)
|
30 |
+
result = pred[0].argmax()
|
31 |
+
## lets create our labels
|
32 |
+
labels = {
|
33 |
+
0: 'maize ear rot',
|
34 |
+
1: 'maize fall armyworm',
|
35 |
+
2: 'maize stem borer'
|
36 |
+
}
|
37 |
+
|
38 |
+
label = labels[pred[0].argmax()]
|
39 |
+
return pred, result, label
|
40 |
+
|
41 |
+
|
42 |
+
iface = gr.Interface(fn=maize_disease_classifier, inputs=gr.inputs.Image(shape=(224, 224)), \
|
43 |
+
outputs=["number", "number", "text"])
|
44 |
+
|
45 |
+
iface.launch(inline=False)
|