Spaces:
Sleeping
Sleeping
Manjot Singh
commited on
Commit
·
7123f83
1
Parent(s):
1651ea1
added translation, and model selection
Browse files- app.py +15 -7
- audio_processing.py +108 -137
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,24 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
from audio_processing import process_audio, print_results
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
output = "Detected language changes:\n\n"
|
7 |
for segment in language_segments:
|
8 |
output += f"Language: {segment['language']}\n"
|
9 |
output += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
|
10 |
|
11 |
-
output += "Transcription with language detection and speaker diarization:\n\n"
|
12 |
for segment in final_segments:
|
13 |
-
output += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']})
|
14 |
-
|
|
|
|
|
|
|
15 |
return output
|
16 |
|
17 |
iface = gr.Interface(
|
18 |
fn=transcribe_audio,
|
19 |
-
inputs=
|
|
|
|
|
|
|
|
|
20 |
outputs="text",
|
21 |
-
title="WhisperX Audio Transcription"
|
22 |
)
|
23 |
|
24 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from audio_processing import process_audio, print_results
|
3 |
+
|
4 |
+
def transcribe_audio(audio_file, translate, model_size):
|
5 |
+
language_segments, final_segments = process_audio(audio_file, translate=translate, model_size=model_size)
|
6 |
|
7 |
output = "Detected language changes:\n\n"
|
8 |
for segment in language_segments:
|
9 |
output += f"Language: {segment['language']}\n"
|
10 |
output += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
|
11 |
|
12 |
+
output += f"Transcription with language detection and speaker diarization (using {model_size} model):\n\n"
|
13 |
for segment in final_segments:
|
14 |
+
output += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:\n"
|
15 |
+
output += f"Original: {segment['text']}\n"
|
16 |
+
if translate:
|
17 |
+
output += f"Translated: {segment['translated']}\n"
|
18 |
+
output += "\n"
|
19 |
return output
|
20 |
|
21 |
iface = gr.Interface(
|
22 |
fn=transcribe_audio,
|
23 |
+
inputs=[
|
24 |
+
gr.Audio(type="filepath"),
|
25 |
+
gr.Checkbox(label="Enable Translation"),
|
26 |
+
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large","large-v2","large-v3"], label="Whisper Model Size", value="small")
|
27 |
+
],
|
28 |
outputs="text",
|
29 |
+
title="WhisperX Audio Transcription and Translation"
|
30 |
)
|
31 |
|
32 |
iface.launch()
|
audio_processing.py
CHANGED
@@ -2,168 +2,139 @@ import whisperx
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from scipy.signal import resample
|
5 |
-
import numpy as np
|
6 |
-
import whisperx
|
7 |
from pyannote.audio import Pipeline
|
8 |
import os
|
9 |
from dotenv import load_dotenv
|
10 |
-
|
11 |
load_dotenv()
|
12 |
-
|
|
|
|
|
13 |
hf_token = os.getenv("HF_TOKEN")
|
14 |
-
import whisperx
|
15 |
-
import torch
|
16 |
-
import numpy as np
|
17 |
-
|
18 |
-
import whisperx
|
19 |
-
import torch
|
20 |
-
import numpy as np
|
21 |
|
22 |
-
import whisperx
|
23 |
-
import torch
|
24 |
-
import numpy as np
|
25 |
CHUNK_LENGTH=5
|
26 |
-
|
27 |
-
# def process_audio(audio_file):
|
28 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
-
# compute_type = "float32"
|
30 |
-
# audio = whisperx.load_audio(audio_file)
|
31 |
-
# model = whisperx.load_model("small", device, compute_type=compute_type)
|
32 |
-
|
33 |
-
# # Initial transcription
|
34 |
-
# result = model.transcribe(audio, batch_size=8)
|
35 |
-
|
36 |
-
# # Sliding window for language detection
|
37 |
-
# window_size = 5 # seconds
|
38 |
-
# step_size = 1 # seconds
|
39 |
-
# sample_rate = 16000
|
40 |
-
|
41 |
-
# language_probs = []
|
42 |
-
# audio_duration = len(audio) / sample_rate
|
43 |
-
|
44 |
-
# if audio_duration <= window_size:
|
45 |
-
# # If audio is shorter than or equal to window size, detect language for entire audio
|
46 |
-
# lang = model.detect_language(audio)
|
47 |
-
# language_probs.append((0, lang))
|
48 |
-
# else:
|
49 |
-
# for i in range(0, len(audio) - window_size * sample_rate + 1, step_size * sample_rate):
|
50 |
-
# window = audio[i:i + window_size * sample_rate]
|
51 |
-
# lang = model.detect_language(window)
|
52 |
-
# language_probs.append((i / sample_rate, lang))
|
53 |
-
|
54 |
-
# # Detect language changes
|
55 |
-
# language_segments = []
|
56 |
-
# current_lang = language_probs[0][1]
|
57 |
-
# start_time = 0
|
58 |
-
# for time, lang in language_probs[1:]:
|
59 |
-
# if lang != current_lang:
|
60 |
-
# language_segments.append({
|
61 |
-
# "language": current_lang,
|
62 |
-
# "start": start_time,
|
63 |
-
# "end": time
|
64 |
-
# })
|
65 |
-
# current_lang = lang
|
66 |
-
# start_time = time
|
67 |
-
|
68 |
-
# # Add the last segment
|
69 |
-
# language_segments.append({
|
70 |
-
# "language": current_lang,
|
71 |
-
# "start": start_time,
|
72 |
-
# "end": audio_duration
|
73 |
-
# })
|
74 |
-
|
75 |
-
# # Re-transcribe each language segment
|
76 |
-
# final_segments = []
|
77 |
-
# for segment in language_segments:
|
78 |
-
# start_sample = int(segment["start"] * sample_rate)
|
79 |
-
# end_sample = int(segment["end"] * sample_rate)
|
80 |
-
# segment_audio = audio[start_sample:end_sample]
|
81 |
-
|
82 |
-
# segment_result = model.transcribe(segment_audio, language=segment["language"])
|
83 |
-
|
84 |
-
# for seg in segment_result["segments"]:
|
85 |
-
# seg["start"] += segment["start"]
|
86 |
-
# seg["end"] += segment["start"]
|
87 |
-
# seg["language"] = segment["language"]
|
88 |
-
# final_segments.append(seg)
|
89 |
-
|
90 |
-
# return language_segments, final_segments
|
91 |
-
|
92 |
import whisperx
|
93 |
import torch
|
94 |
import numpy as np
|
|
|
|
|
|
|
95 |
|
96 |
-
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000): #
|
97 |
chunks = []
|
98 |
-
for i in range(0, len(audio), chunk_size):
|
99 |
chunk = audio[i:i+chunk_size]
|
100 |
if len(chunk) < chunk_size:
|
101 |
chunk = np.pad(chunk, (0, chunk_size - len(chunk)))
|
102 |
chunks.append(chunk)
|
103 |
return chunks
|
104 |
|
105 |
-
def process_audio(audio_file):
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
diarization_pipeline = diarization_pipeline.to(torch.device(device))
|
114 |
|
115 |
-
|
116 |
-
|
117 |
|
|
|
118 |
|
119 |
-
|
120 |
-
chunks = preprocess_audio(audio)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
for i, chunk in enumerate(chunks):
|
126 |
-
# Detect language for this chunk
|
127 |
-
lang = model.detect_language(chunk)
|
128 |
-
|
129 |
-
# Transcribe this chunk
|
130 |
-
result = model.transcribe(chunk, language=lang)
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
|
159 |
-
|
|
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
for segment in segments:
|
169 |
-
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s]
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from scipy.signal import resample
|
|
|
|
|
5 |
from pyannote.audio import Pipeline
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
|
|
8 |
load_dotenv()
|
9 |
+
import logging
|
10 |
+
import time
|
11 |
+
from difflib import SequenceMatcher
|
12 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
14 |
CHUNK_LENGTH=5
|
15 |
+
OVERLAP=2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
import whisperx
|
17 |
import torch
|
18 |
import numpy as np
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
|
23 |
+
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000): # 2 seconds overlap
|
24 |
chunks = []
|
25 |
+
for i in range(0, len(audio), chunk_size - overlap):
|
26 |
chunk = audio[i:i+chunk_size]
|
27 |
if len(chunk) < chunk_size:
|
28 |
chunk = np.pad(chunk, (0, chunk_size - len(chunk)))
|
29 |
chunks.append(chunk)
|
30 |
return chunks
|
31 |
|
32 |
+
def process_audio(audio_file, translate=False, model_size="small"):
|
33 |
+
start_time = time.time()
|
34 |
+
|
35 |
+
try:
|
36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
compute_type = "float32"
|
38 |
+
audio = whisperx.load_audio(audio_file)
|
39 |
+
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
|
|
40 |
|
41 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
42 |
+
diarization_pipeline = diarization_pipeline.to(torch.device(device))
|
43 |
|
44 |
+
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
45 |
|
46 |
+
chunks = preprocess_audio(audio)
|
|
|
47 |
|
48 |
+
language_segments = []
|
49 |
+
final_segments = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
overlap_duration = 2 # 2 seconds overlap
|
52 |
+
for i, chunk in enumerate(chunks):
|
53 |
+
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
54 |
+
chunk_end_time = chunk_start_time + CHUNK_LENGTH
|
55 |
+
logger.info(f"Processing chunk {i+1}/{len(chunks)}")
|
56 |
+
lang = model.detect_language(chunk)
|
57 |
+
result_transcribe = model.transcribe(chunk, language=lang)
|
58 |
+
if translate:
|
59 |
+
result_translate = model.transcribe(chunk, task="translate")
|
60 |
+
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
61 |
+
for j, t_seg in enumerate(result_transcribe["segments"]):
|
62 |
+
segment_start = chunk_start_time + t_seg["start"]
|
63 |
+
segment_end = chunk_start_time + t_seg["end"]
|
64 |
+
# Skip segments in the overlapping region of the previous chunk
|
65 |
+
if i > 0 and segment_end <= chunk_start_time + overlap_duration:
|
66 |
+
print(f"Skipping segment in overlap with previous chunk: {segment_start:.2f} - {segment_end:.2f}")
|
67 |
+
continue
|
68 |
|
69 |
+
# Skip segments in the overlapping region of the next chunk
|
70 |
+
if i < len(chunks) - 1 and segment_start >= chunk_end_time - overlap_duration:
|
71 |
+
print(f"Skipping segment in overlap with next chunk: {segment_start:.2f} - {segment_end:.2f}")
|
72 |
+
continue
|
73 |
+
|
74 |
+
speakers = []
|
75 |
+
for turn, track, speaker in diarization_result.itertracks(yield_label=True):
|
76 |
+
if turn.start <= segment_end and turn.end >= segment_start:
|
77 |
+
speakers.append(speaker)
|
78 |
+
|
79 |
+
segment = {
|
80 |
+
"start": segment_start,
|
81 |
+
"end": segment_end,
|
82 |
+
"language": lang,
|
83 |
+
"speaker": max(set(speakers), key=speakers.count) if speakers else "Unknown",
|
84 |
+
"text": t_seg["text"],
|
85 |
+
}
|
86 |
+
|
87 |
+
if translate:
|
88 |
+
segment["translated"] = result_translate["segments"][j]["text"]
|
89 |
+
|
90 |
+
final_segments.append(segment)
|
91 |
|
92 |
+
language_segments.append({
|
93 |
+
"language": lang,
|
94 |
+
"start": chunk_start_time,
|
95 |
+
"end": chunk_start_time + CHUNK_LENGTH
|
96 |
+
})
|
97 |
+
chunk_end_time = time.time()
|
98 |
+
logger.info(f"Chunk {i+1} processed in {chunk_end_time - chunk_start_time:.2f} seconds")
|
99 |
|
100 |
+
final_segments.sort(key=lambda x: x["start"])
|
101 |
+
merged_segments = merge_nearby_segments(final_segments)
|
102 |
|
103 |
+
end_time = time.time()
|
104 |
+
logger.info(f"Total processing time: {end_time - start_time:.2f} seconds")
|
105 |
+
|
106 |
+
return language_segments, merged_segments
|
107 |
+
except Exception as e:
|
108 |
+
logger.error(f"An error occurred during audio processing: {str(e)}")
|
109 |
+
raise
|
110 |
+
|
111 |
+
def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.7):
|
112 |
+
merged = []
|
113 |
+
for segment in segments:
|
114 |
+
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
115 |
+
merged.append(segment)
|
116 |
+
else:
|
117 |
+
# Find the overlap
|
118 |
+
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
119 |
+
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
120 |
+
|
121 |
+
if match.size / len(segment['text']) > similarity_threshold:
|
122 |
+
# Merge the segments
|
123 |
+
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
124 |
+
merged_translated = merged[-1]['translated'] + segment['translated'][match.b + match.size:]
|
125 |
+
|
126 |
+
merged[-1]['end'] = segment['end']
|
127 |
+
merged[-1]['text'] = merged_text
|
128 |
+
merged[-1]['translated'] = merged_translated
|
129 |
+
else:
|
130 |
+
# If no significant overlap, append as a new segment
|
131 |
+
merged.append(segment)
|
132 |
+
return merged
|
133 |
+
|
134 |
+
def print_results(segments):
|
135 |
for segment in segments:
|
136 |
+
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:")
|
137 |
+
print(f"Original: {segment['text']}")
|
138 |
+
if 'translated' in segment:
|
139 |
+
print(f"Translated: {segment['translated']}")
|
140 |
+
print()
|
requirements.txt
CHANGED
@@ -12,4 +12,6 @@ torchaudio>=2
|
|
12 |
faster-whisper==1.0.0
|
13 |
setuptools>=65
|
14 |
nltk
|
15 |
-
python-dotenv
|
|
|
|
|
|
12 |
faster-whisper==1.0.0
|
13 |
setuptools>=65
|
14 |
nltk
|
15 |
+
python-dotenv
|
16 |
+
difflib
|
17 |
+
pydub
|