Spaces:
Sleeping
Sleeping
Manjot Singh
commited on
Commit
·
b4a3bdb
1
Parent(s):
6e1e8ec
asr_timestamp_transcription+diarization
Browse files- audio_processing.py +169 -0
audio_processing.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisperx
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from scipy.signal import resample
|
5 |
+
import numpy as np
|
6 |
+
import whisperx
|
7 |
+
from pyannote.audio import Pipeline
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
hf_token = os.getenv("HF_TOKEN")
|
14 |
+
import whisperx
|
15 |
+
import torch
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
import whisperx
|
19 |
+
import torch
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
import whisperx
|
23 |
+
import torch
|
24 |
+
import numpy as np
|
25 |
+
CHUNK_LENGTH=5
|
26 |
+
|
27 |
+
# def process_audio(audio_file):
|
28 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
+
# compute_type = "float32"
|
30 |
+
# audio = whisperx.load_audio(audio_file)
|
31 |
+
# model = whisperx.load_model("small", device, compute_type=compute_type)
|
32 |
+
|
33 |
+
# # Initial transcription
|
34 |
+
# result = model.transcribe(audio, batch_size=8)
|
35 |
+
|
36 |
+
# # Sliding window for language detection
|
37 |
+
# window_size = 5 # seconds
|
38 |
+
# step_size = 1 # seconds
|
39 |
+
# sample_rate = 16000
|
40 |
+
|
41 |
+
# language_probs = []
|
42 |
+
# audio_duration = len(audio) / sample_rate
|
43 |
+
|
44 |
+
# if audio_duration <= window_size:
|
45 |
+
# # If audio is shorter than or equal to window size, detect language for entire audio
|
46 |
+
# lang = model.detect_language(audio)
|
47 |
+
# language_probs.append((0, lang))
|
48 |
+
# else:
|
49 |
+
# for i in range(0, len(audio) - window_size * sample_rate + 1, step_size * sample_rate):
|
50 |
+
# window = audio[i:i + window_size * sample_rate]
|
51 |
+
# lang = model.detect_language(window)
|
52 |
+
# language_probs.append((i / sample_rate, lang))
|
53 |
+
|
54 |
+
# # Detect language changes
|
55 |
+
# language_segments = []
|
56 |
+
# current_lang = language_probs[0][1]
|
57 |
+
# start_time = 0
|
58 |
+
# for time, lang in language_probs[1:]:
|
59 |
+
# if lang != current_lang:
|
60 |
+
# language_segments.append({
|
61 |
+
# "language": current_lang,
|
62 |
+
# "start": start_time,
|
63 |
+
# "end": time
|
64 |
+
# })
|
65 |
+
# current_lang = lang
|
66 |
+
# start_time = time
|
67 |
+
|
68 |
+
# # Add the last segment
|
69 |
+
# language_segments.append({
|
70 |
+
# "language": current_lang,
|
71 |
+
# "start": start_time,
|
72 |
+
# "end": audio_duration
|
73 |
+
# })
|
74 |
+
|
75 |
+
# # Re-transcribe each language segment
|
76 |
+
# final_segments = []
|
77 |
+
# for segment in language_segments:
|
78 |
+
# start_sample = int(segment["start"] * sample_rate)
|
79 |
+
# end_sample = int(segment["end"] * sample_rate)
|
80 |
+
# segment_audio = audio[start_sample:end_sample]
|
81 |
+
|
82 |
+
# segment_result = model.transcribe(segment_audio, language=segment["language"])
|
83 |
+
|
84 |
+
# for seg in segment_result["segments"]:
|
85 |
+
# seg["start"] += segment["start"]
|
86 |
+
# seg["end"] += segment["start"]
|
87 |
+
# seg["language"] = segment["language"]
|
88 |
+
# final_segments.append(seg)
|
89 |
+
|
90 |
+
# return language_segments, final_segments
|
91 |
+
|
92 |
+
import whisperx
|
93 |
+
import torch
|
94 |
+
import numpy as np
|
95 |
+
|
96 |
+
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000): # 30 seconds at 16kHz
|
97 |
+
chunks = []
|
98 |
+
for i in range(0, len(audio), chunk_size):
|
99 |
+
chunk = audio[i:i+chunk_size]
|
100 |
+
if len(chunk) < chunk_size:
|
101 |
+
chunk = np.pad(chunk, (0, chunk_size - len(chunk)))
|
102 |
+
chunks.append(chunk)
|
103 |
+
return chunks
|
104 |
+
|
105 |
+
def process_audio(audio_file):
|
106 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
107 |
+
compute_type = "float32"
|
108 |
+
audio = whisperx.load_audio(audio_file)
|
109 |
+
model = whisperx.load_model("small", device, compute_type=compute_type)
|
110 |
+
|
111 |
+
# Initialize speaker diarization pipeline
|
112 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
113 |
+
diarization_pipeline = diarization_pipeline.to(torch.device(device))
|
114 |
+
|
115 |
+
# Perform diarization on the entire audio
|
116 |
+
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
117 |
+
|
118 |
+
|
119 |
+
# Preprocess audio into consistent chunks
|
120 |
+
chunks = preprocess_audio(audio)
|
121 |
+
|
122 |
+
language_segments = []
|
123 |
+
final_segments = []
|
124 |
+
|
125 |
+
for i, chunk in enumerate(chunks):
|
126 |
+
# Detect language for this chunk
|
127 |
+
lang = model.detect_language(chunk)
|
128 |
+
|
129 |
+
# Transcribe this chunk
|
130 |
+
result = model.transcribe(chunk, language=lang)
|
131 |
+
|
132 |
+
chunk_start_time = i * 5 # Each chunk is 30 seconds
|
133 |
+
|
134 |
+
# Adjust timestamps and add language information
|
135 |
+
for segment in result["segments"]:
|
136 |
+
segment_start = chunk_start_time + segment["start"]
|
137 |
+
segment_end = chunk_start_time + segment["end"]
|
138 |
+
segment["start"] = segment_start
|
139 |
+
segment["end"] = segment_end
|
140 |
+
segment["language"] = lang
|
141 |
+
|
142 |
+
speakers = []
|
143 |
+
for turn, track, speaker in diarization_result.itertracks(yield_label=True):
|
144 |
+
if turn.start <= segment_end and turn.end >= segment_start:
|
145 |
+
speakers.append(speaker)
|
146 |
+
if speakers:
|
147 |
+
segment["speaker"] = max(set(speakers), key=speakers.count)
|
148 |
+
else:
|
149 |
+
segment["speaker"] = "Unknown"
|
150 |
+
|
151 |
+
final_segments.append(segment)
|
152 |
+
# Add language segment
|
153 |
+
language_segments.append({
|
154 |
+
"language": lang,
|
155 |
+
"start": chunk_start_time,
|
156 |
+
"end": chunk_start_time + 5
|
157 |
+
})
|
158 |
+
|
159 |
+
return language_segments, final_segments
|
160 |
+
|
161 |
+
def print_results(language, language_probs, segments):
|
162 |
+
print(f"Detected Language: {language}")
|
163 |
+
print("Language Probabilities:")
|
164 |
+
for lang, prob in language_probs.items():
|
165 |
+
print(f" {lang}: {prob:.4f}")
|
166 |
+
|
167 |
+
print("\nTranscription:")
|
168 |
+
for segment in segments:
|
169 |
+
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] Speaker {segment['speaker']}: {segment['text']}")
|