Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
@st.cache_resource(show_spinner="Loading Model & Tokenizer")
|
6 |
+
def load_model():
|
7 |
+
# This is cached and will not run again and again.
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
import torch
|
10 |
+
|
11 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
"mosama/Qwen2.5-0.5B-Pretrained-ar-end-urd-500", device_map="cpu", torch_dtype=torch.float16)
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("mosama/Qwen2.5-0.5B-Pretrained-ar-end-urd-500")
|
15 |
+
st.success('Model & Tokenizer Loaded Successfully!', icon="β
")
|
16 |
+
return base_model, tokenizer
|
17 |
+
|
18 |
+
st.title("Qwen2.5-0.5B Arabic, English & Urdu Continuous Pretrained")
|
19 |
+
|
20 |
+
model, tokenizer = load_model()
|
21 |
+
|
22 |
+
# Initialize chat history
|
23 |
+
if "messages" not in st.session_state:
|
24 |
+
st.session_state.messages = []
|
25 |
+
|
26 |
+
for message in st.session_state.messages:
|
27 |
+
with st.chat_message(message["role"]):
|
28 |
+
st.markdown(message["content"])
|
29 |
+
|
30 |
+
if not st.session_state.messages:
|
31 |
+
with st.chat_message("assistant", avatar="assistant"):
|
32 |
+
st.write("Hello π I am an AI bot powered by Qwen 2.5 0.5B model.")
|
33 |
+
st.session_state.messages.append({"role": "assistant", "content": "Hello π I am an AI bot powered by Qwen 2.5 0.5B model."})
|
34 |
+
|
35 |
+
if prompt := st.chat_input("Say Something"):
|
36 |
+
# Display user message in chat message container
|
37 |
+
with st.chat_message("user"):
|
38 |
+
st.markdown(prompt)
|
39 |
+
# Add user message to chat history
|
40 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
41 |
+
|
42 |
+
if prompt:
|
43 |
+
with st.spinner(text="Generating response..."):
|
44 |
+
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
45 |
+
print(model_inputs)
|
46 |
+
generated_ids = model.generate(
|
47 |
+
**model_inputs,
|
48 |
+
max_new_tokens=50,
|
49 |
+
repetition_penalty=1.2,
|
50 |
+
temperature=0.5,
|
51 |
+
do_sample=True,
|
52 |
+
top_p=0.9,
|
53 |
+
top_k=20
|
54 |
+
)
|
55 |
+
print("Generated Response!")
|
56 |
+
response = tokenizer.decode(generated_ids, skip_special_tokens=True)[0]
|
57 |
+
|
58 |
+
# Display assistant response in chat message container
|
59 |
+
with st.chat_message("assistant"):
|
60 |
+
st.markdown(response)
|
61 |
+
# Add assistant response to chat history
|
62 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|