convnext
Browse files- app.py +17 -14
- v5-epoch=19-val_loss=0.1464-val_accuracy=0.9514.ckpt +3 -0
app.py
CHANGED
|
@@ -13,15 +13,7 @@ for key in list(model_weights):
|
|
| 13 |
|
| 14 |
|
| 15 |
def get_model():
|
| 16 |
-
model = timm.create_model('
|
| 17 |
-
num_in_features = model.get_classifier().in_features
|
| 18 |
-
from torch import nn
|
| 19 |
-
|
| 20 |
-
model.fc = nn.Sequential(
|
| 21 |
-
nn.Linear(in_features=num_in_features, out_features=1024, bias=False),
|
| 22 |
-
nn.ReLU(),
|
| 23 |
-
nn.Linear(in_features=1024, out_features=2, bias=False),
|
| 24 |
-
)
|
| 25 |
|
| 26 |
return model
|
| 27 |
|
|
@@ -33,15 +25,26 @@ model.eval()
|
|
| 33 |
import requests
|
| 34 |
from PIL import Image
|
| 35 |
from torchvision import transforms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Download human-readable labels for ImageNet.
|
| 38 |
labels = ['good', 'ill']
|
| 39 |
-
CROP=384
|
| 40 |
|
| 41 |
def predict(inp):
|
| 42 |
-
img =
|
| 43 |
-
img =
|
| 44 |
-
img = torchvision.transforms.CenterCrop(CROP)(img)
|
| 45 |
img = img.unsqueeze(0)
|
| 46 |
with torch.no_grad():
|
| 47 |
prediction = model(img).softmax(1).numpy()
|
|
@@ -51,7 +54,7 @@ def predict(inp):
|
|
| 51 |
import gradio as gr
|
| 52 |
|
| 53 |
gr.Interface(fn=predict,
|
| 54 |
-
inputs=gr.Image(
|
| 55 |
outputs=gr.Label(num_top_classes=1),
|
| 56 |
).launch()
|
| 57 |
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def get_model():
|
| 16 |
+
model = timm.create_model('convnext_base.fb_in22k_ft_in1k', pretrained=True, num_classes=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
return model
|
| 19 |
|
|
|
|
| 25 |
import requests
|
| 26 |
from PIL import Image
|
| 27 |
from torchvision import transforms
|
| 28 |
+
import albumentations as A
|
| 29 |
+
|
| 30 |
+
CROP = 224
|
| 31 |
+
SIZE = CROP + CROP//8
|
| 32 |
+
|
| 33 |
+
ho_trans_center = A.Compose([
|
| 34 |
+
A.Resize(SIZE,SIZE, interpolation=cv2.INTER_AREA),
|
| 35 |
+
A.CenterCrop(height=CROP, width=CROP, always_apply=True),
|
| 36 |
+
])
|
| 37 |
+
topt = A.Compose([
|
| 38 |
+
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
| 39 |
+
ToTensorV2(),
|
| 40 |
+
])
|
| 41 |
|
| 42 |
# Download human-readable labels for ImageNet.
|
| 43 |
labels = ['good', 'ill']
|
|
|
|
| 44 |
|
| 45 |
def predict(inp):
|
| 46 |
+
img = ho_trans_center(image = inp)['image']
|
| 47 |
+
img = topt(image = img)['image']
|
|
|
|
| 48 |
img = img.unsqueeze(0)
|
| 49 |
with torch.no_grad():
|
| 50 |
prediction = model(img).softmax(1).numpy()
|
|
|
|
| 54 |
import gradio as gr
|
| 55 |
|
| 56 |
gr.Interface(fn=predict,
|
| 57 |
+
inputs=gr.Image(),
|
| 58 |
outputs=gr.Label(num_top_classes=1),
|
| 59 |
).launch()
|
| 60 |
|
v5-epoch=19-val_loss=0.1464-val_accuracy=0.9514.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f34c9f1ef5bf747a84a52eff907ffafb9f37c7a023a4ea9e5b736fbc6e4156be
|
| 3 |
+
size 1051254575
|