File size: 7,188 Bytes
732e0d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import wandb

from model.lstmlstm import Seq2SeqTest
from model.lstmlstmattention import Seq2SeqAttTest
from model.transformer_seq2seq import Seq2SeqTransformerTest
from modelbuilder import ModelBuilder


class Test:
    def run_testing(self, config, model, test_dataloader):
        self.config = config
        self.device = config['device']
        self.loss = self.config['loss']
        self.weight = self.config['loss_weight']
        self.model_name = self.config['model_name']
        self.classification = config['classification']
        self.n_output = len(self.config['selected_opensim_labels'])
        if not self.n_output == len(self.weight):
            self.weight = None
        modelbuilder_handler = ModelBuilder(self.config)
        criterion = modelbuilder_handler.get_criterion(self.weight)
        self.tester = self.setup_tester()
        y_pred, y_true, loss = self.tester(model, test_dataloader, criterion, self.device)
        return y_pred, y_true, loss

    def setup_tester(self):
        if self.model_name == 'seq2seqatt':
            tester = self.testing_seq2seqatt
        elif self.model_name == 'seq2seqtransformer':
            tester = self.testing_transformer_seq2seq
        elif (self.model_name == 'transformer' and not self.classification) or (self.model_name == 'transformertsai' and not self.classification):
            tester = self.testing_transformer
        elif self.classification:
            tester = self.testing_w_classification
        else:
            tester = self.testing
        return tester

    def testing(self, model, test_dataloader, criterion, device):
        model.eval()
        with torch.no_grad():
            test_loss = []
            test_preds = []
            test_trues = []
            for x, y in test_dataloader:
                x = x.to(device)
                y = y.to(device)
                y_pred = model(x.float())
                loss = criterion(y, y_pred)
                test_loss.append(loss.item())
                test_preds.append(y_pred)
                test_trues.append(y)
            test_loss = torch.mean(torch.tensor(test_loss))
            print('Test Accuracy of the model: {}'.format(test_loss))
        # wandb.log({"Test Loss": test_loss})
        return torch.cat(test_preds, 0), torch.cat(test_trues, 0), test_loss

    def testing_w_classification(self, model, test_dataloader, criterion, device):
        model.eval()
        with torch.no_grad():
            test_loss = []
            test_preds = []
            test_trues = []
            for x, y, y_label in test_dataloader:
                x = x.to(device).float()
                y_label = y_label.type(torch.LongTensor).to(device)  # The targets passed to nn.CrossEntropyLoss() should be in torch.long format
                y = y.to(device)
                y_pred = model(x)
                y_pred[0] = y_pred[0].double()
                y_pred[1] = y_pred[1].double()
                y_true = [y, y_label]
                loss = criterion(y_pred, y_true)
                test_loss.append(loss.item())
                test_preds.append(y_pred)
                test_trues.append(y_true)
            test_loss = torch.mean(torch.tensor(test_loss))
            print('Test Accuracy of the model: {}'.format(test_loss))
        wandb.log({"Test Loss": test_loss})
        test_preds_reg = []
        test_trues_reg = []
        for pred, true in zip(test_preds, test_trues):
            test_preds_reg.append(pred[0])
            test_trues_reg.append(true[0])
        return torch.cat(test_preds_reg, 0), torch.cat(test_trues_reg, 0), test_loss

    def testing_seq2seq(self, model, test_dataloader, criterion, device):
        model.eval()
        with torch.no_grad():
            test_loss = []
            test_preds = []
            test_trues = []
            for x, y in test_dataloader:
                x = x.to(device)
                y = y.to(device)
                # y_pred = model(x.float(), y.float())  # just for seq 2 seq
                y_pred = Seq2SeqTest(model, x.float())
                loss = criterion(y_pred[:, 1:, :].to(device), y[:, 1:, :])
                test_loss.append(loss.item())
                test_preds.append(y_pred)
                test_trues.append(y)
            test_loss = torch.mean(torch.tensor(test_loss))
            print('Test Accuracy of the model: {}'.format(test_loss))
        wandb.log({"Test Loss": test_loss})
        return torch.cat(test_preds, 0), torch.cat(test_trues, 0), test_loss

    def testing_seq2seqatt(self, model, test_dataloader, criterion, device):
        model.eval()
        with torch.no_grad():
            test_loss = []
            test_preds = []
            test_trues = []
            for x, y in test_dataloader:
                x = x.to(device)
                y = y.to(device)
                # y_pred = model(x.float(), y.float())  # just for seq 2 seq
                y_pred = Seq2SeqAttTest(model, x.float())
                loss = criterion(y_pred[:, 1:, :].to(device), y[:, 1:, :])
                test_loss.append(loss.item())
                test_preds.append(y_pred)
                test_trues.append(y)
            test_loss = torch.mean(torch.tensor(test_loss))
            print('Test Accuracy of the model: {}'.format(test_loss))
        wandb.log({"Test Loss": test_loss})
        return torch.cat(test_preds, 0), torch.cat(test_trues, 0), test_loss

    def testing_transformer(self, model, test_dataloader, criterion, device):
        model.eval()
        with torch.no_grad():
            test_loss = []
            test_preds = []
            test_trues = []
            for x, y in test_dataloader:
                x = x.to(device)
                y = y.to(device)
                y_pred = model(x.float())  # just for transformer
                loss = criterion(y, y_pred.to(device))
                test_loss.append(loss.item())
                test_preds.append(y_pred)
                test_trues.append(y)
            test_loss = torch.mean(torch.tensor(test_loss))
            print('Test Accuracy of the model: {}'.format(test_loss))
        wandb.log({"Test Loss": test_loss})
        return torch.cat(test_preds, 0), torch.cat(test_trues, 0), test_loss

    def testing_transformer_seq2seq(self, model, test_dataloader, criterion, device):
        model.eval()
        with torch.no_grad():
            test_loss = []
            test_preds = []
            test_trues = []
            for x, y in test_dataloader:
                x = x.to(device)
                y = y.to(device)
                y_pred = Seq2SeqTransformerTest(model, x.float())
                # y_pred = model(x.float(), y.float()[:, :-1, :])  # just for seq 2 seq transformer
                loss = criterion(y_pred, y.to(device))
                test_loss.append(loss.item())
                test_preds.append(y_pred)
                test_trues.append(y[:, 1:, :])
            test_loss = torch.mean(torch.tensor(test_loss))
            print('Test Accuracy of the model: {}'.format(test_loss))
        # wandb.log({"Test Loss": test_loss})
        return torch.cat(test_preds, 0), torch.cat(test_trues, 0), test_loss