mou3az commited on
Commit
9c4a097
·
verified ·
1 Parent(s): a5696cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +456 -74
app.py CHANGED
@@ -1,17 +1,163 @@
1
- import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
2
  import requests
3
- from langchain.embeddings import SentenceTransformerEmbeddings
 
4
  from langchain.vectorstores import FAISS
5
- from langchain_community.chat_models.huggingface import ChatHuggingFace
6
- from langchain.schema import SystemMessage, HumanMessage, AIMessage
7
  from langchain_community.llms import HuggingFaceEndpoint
 
 
 
 
 
 
 
 
8
 
9
- model_name = "sentence-transformers/all-mpnet-base-v2"
10
- embedding_llm = SentenceTransformerEmbeddings(model_name=model_name)
 
 
 
11
 
12
- db = FAISS.load_local("faiss_index", embedding_llm, allow_dangerous_deserialization=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- # Set up Hugging Face model
15
  llm = HuggingFaceEndpoint(
16
  repo_id="HuggingFaceH4/starchat2-15b-v0.1",
17
  task="text-generation",
@@ -24,98 +170,334 @@ llm = HuggingFaceEndpoint(
24
  )
25
  chat_model = ChatHuggingFace(llm=llm)
26
 
27
- messages = [
28
- SystemMessage(content="You are a helpful assistant."),
29
- HumanMessage(content="Hi AI, how are you today?"),
30
- AIMessage(content="I'm great thank you. How can I help you?")
31
- ]
32
 
33
- def handle_message(message: str, mode: str):
34
- result_text, result_image = "", None
35
-
36
- if not message.strip():
37
- return "Enter a valid message.", None
38
-
39
- if mode == "Chat-Message":
40
- result_text = chat_message(message)
41
- elif mode == "Web-Search":
42
- result_text = web_search(message)
43
- elif mode == "Chart-Generator":
44
- result_text, result_image = chart_generator(message)
45
- else:
46
- result_text = "Select a valid mode."
47
-
48
- return result_text, result_image
49
 
50
- def chat_message(message: str):
51
- global messages
52
-
53
- prompt = HumanMessage(content=message)
54
- messages.append(prompt)
55
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  response = chat_model.invoke(messages)
57
  messages.append(response.content)
58
-
59
- if len(messages) >= 6:
60
- messages = messages[-6:]
61
-
62
- return f"IT-Assistant: {response.content}"
63
 
64
- def web_search(message: str):
65
- global messages
66
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  similar_docs = db.similarity_search(message, k=3)
68
-
69
  if similar_docs:
70
  source_knowledge = "\n".join([x.page_content for x in similar_docs])
71
  else:
72
  source_knowledge = ""
73
-
74
  augmented_prompt = f"""
75
  If the answer to the next query is not contained in the Search, say 'No Answer Is Available' and then just give guidance for the query.
76
  Query: {message}
77
  Search:
78
  {source_knowledge}
79
  """
80
-
81
- prompt = HumanMessage(content=augmented_prompt)
82
- messages.append(prompt)
83
-
84
- response = chat_model.invoke(messages)
85
  messages.append(response.content)
86
-
87
- if len(messages) >= 6:
88
- messages = messages[-6:]
89
-
90
- return f"IT-Assistant: {response.content}"
91
 
92
- def chart_generator(message: str):
93
- global messages
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
 
95
  chart_url = f"https://quickchart.io/natural/{message}"
96
  response = requests.get(chart_url)
97
 
98
  if response.status_code == 200:
99
- message_with_description = f"Describe and analyse the content of this chart: {message}"
 
100
 
101
  prompt = HumanMessage(content=message_with_description)
102
  messages.append(prompt)
103
 
104
- response = chat_model.invoke(messages)
105
- messages.append(response.content)
106
-
107
- if len(messages) >= 6:
108
- messages = messages[-6:]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
- return f"IT-Assistant: {response.content}", chart_url
 
111
  else:
112
- return f"Can't generate this image. Please provide valid chart details.", None
113
-
114
- demo = gr.Interface(
115
- fn=handle_message,
116
- inputs=["text", gr.Radio(["Chat-Message", "Web-Search", "Chart-Generator"], label="mode", info="Choose a mode and enter your message, then click submit to interact.")],
117
- outputs=[gr.Textbox(label="Response"), gr.Image(label="Chart", type="filepath")],
118
- theme=gr.themes.Soft(),
119
- title="IT Assistant")
120
-
121
- demo.launch(show_api=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import PyPDF2
2
+ import os
3
+ from bs4 import BeautifulSoup
4
+ import tempfile
5
+ import csv
6
+ import json
7
+ import xml.etree.ElementTree as ET
8
+ import docx
9
+ import pptx
10
+ import openpyxl
11
+ import re
12
+ import nltk
13
+ import time
14
  import requests
15
+ import gradio as gr
16
+ from nltk.tokenize import word_tokenize
17
  from langchain.vectorstores import FAISS
 
 
18
  from langchain_community.llms import HuggingFaceEndpoint
19
+ from langchain.embeddings import SentenceTransformerEmbeddings
20
+ from langchain.schema import SystemMessage, HumanMessage, AIMessage
21
+ from langchain_community.chat_models.huggingface import ChatHuggingFace
22
+ from youtube_transcript_api import YouTubeTranscriptApi
23
+ from youtube_transcript_api._errors import NoTranscriptFound, TranscriptsDisabled, VideoUnavailable
24
+ nltk.download('punkt')
25
+ nltk.download('omw-1.4')
26
+ nltk.download('wordnet')
27
 
28
+ def read_csv(file_path):
29
+ with open(file_path, 'r', encoding='utf-8', errors='ignore', newline='') as csvfile:
30
+ csv_reader = csv.reader(csvfile)
31
+ csv_data = [row for row in csv_reader]
32
+ return ' '.join([' '.join(row) for row in csv_data])
33
 
34
+ def read_text(file_path):
35
+ with open(file_path, 'r', encoding='utf-8', errors='ignore', newline='') as f:
36
+ return f.read()
37
+
38
+ def read_pdf(file_path):
39
+ text_data = []
40
+ with open(file_path, 'rb') as pdf_file:
41
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
42
+ for page in pdf_reader.pages:
43
+ text_data.append(page.extract_text())
44
+ return '\n'.join(text_data)
45
+
46
+ def read_docx(file_path):
47
+ doc = docx.Document(file_path)
48
+ return '\n'.join([paragraph.text for paragraph in doc.paragraphs])
49
+
50
+ def read_pptx(file_path):
51
+ ppt = pptx.Presentation(file_path)
52
+ text_data = ''
53
+ for slide in ppt.slides:
54
+ for shape in slide.shapes:
55
+ if hasattr(shape, "text"):
56
+ text_data += shape.text + '\n'
57
+ return text_data
58
+
59
+ def read_xlsx(file_path):
60
+ workbook = openpyxl.load_workbook(file_path)
61
+ sheet = workbook.active
62
+ text_data = ''
63
+ for row in sheet.iter_rows(values_only=True):
64
+ text_data += ' '.join([str(cell) for cell in row if cell is not None]) + '\n'
65
+ return text_data
66
+
67
+ def read_json(file_path):
68
+ with open(file_path, 'r') as f:
69
+ json_data = json.load(f)
70
+ return json.dumps(json_data)
71
+
72
+ def read_html(file_path):
73
+ with open(file_path, 'r') as f:
74
+ html_content = f.read()
75
+ soup = BeautifulSoup(html_content, 'html.parser')
76
+ return soup
77
+
78
+ def read_xml(file_path):
79
+ tree = ET.parse(file_path)
80
+ root = tree.getroot()
81
+ return ET.tostring(root, encoding='unicode')
82
+
83
+ def process_youtube_video(url, languages=['en', 'ar']):
84
+ if 'youtube.com/watch' in url or 'youtu.be/' in url:
85
+ try:
86
+ if "v=" in url:
87
+ video_id = url.split("v=")[1].split("&")[0]
88
+ elif "youtu.be/" in url:
89
+ video_id = url.split("youtu.be/")[1].split("?")[0]
90
+ else:
91
+ return "Invalid YouTube video URL. Please provide a valid YouTube video link."
92
+
93
+ response = requests.get(f"http://img.youtube.com/vi/{video_id}/mqdefault.jpg")
94
+ if response.status_code != 200:
95
+ return "Video doesn't exist."
96
+
97
+ transcript_data = []
98
+ for lang in languages:
99
+ try:
100
+ transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=[lang])
101
+ transcript_data.append(' '.join([entry['text'] for entry in transcript]))
102
+ except (NoTranscriptFound, TranscriptsDisabled, VideoUnavailable):
103
+ continue
104
+
105
+ return ' '.join(transcript_data) if transcript_data else "Please choose a YouTube video with available English or Arabic transcripts."
106
+
107
+ except Exception as e:
108
+ return f"An error occurred: {e}"
109
+ else:
110
+ return "Invalid YouTube URL. Please provide a valid YouTube link."
111
+
112
+ def read_web_page(url):
113
+ result = requests.get(url)
114
+ if result.status_code == 200:
115
+ src = result.content
116
+ soup = BeautifulSoup(src, 'html.parser')
117
+ text_data = ''
118
+ for p in soup.find_all('p'):
119
+ text_data += p.get_text() + '\n'
120
+ return text_data
121
+ else:
122
+ return "Please provide a valid webpage link"
123
+
124
+ def read_data(file_path_or_url, languages=['en', 'ar']):
125
+ if file_path_or_url.endswith('.csv'):
126
+ return read_csv(file_path_or_url)
127
+ elif file_path_or_url.endswith('.txt'):
128
+ return read_text(file_path_or_url)
129
+ elif file_path_or_url.endswith('.pdf'):
130
+ return read_pdf(file_path_or_url)
131
+ elif file_path_or_url.endswith('.docx'):
132
+ return read_docx(file_path_or_url)
133
+ elif file_path_or_url.endswith('.pptx'):
134
+ return read_pptx(file_path_or_url)
135
+ elif file_path_or_url.endswith('.xlsx'):
136
+ return read_xlsx(file_path_or_url)
137
+ elif file_path_or_url.endswith('.json'):
138
+ return read_json(file_path_or_url)
139
+ elif file_path_or_url.endswith('.html'):
140
+ return read_html(file_path_or_url)
141
+ elif file_path_or_url.endswith('.xml'):
142
+ return read_xml(file_path_or_url)
143
+ elif 'youtube.com/watch' in file_path_or_url or 'youtu.be/' in file_path_or_url:
144
+ return process_youtube_video(file_path_or_url, languages)
145
+ elif file_path_or_url.startswith('http'):
146
+ return read_web_page(file_path_or_url)
147
+ else:
148
+ return "Unsupported type or format."
149
+
150
+ def normalize_text(text):
151
+ text = re.sub("\*?", "", text)
152
+ text = text.lower()
153
+ text = text.strip()
154
+ punctuation = '''!()[]{};:'"\<>/?$%^&*_`~='''
155
+ for punc in punctuation:
156
+ text = text.replace(punc, "")
157
+ text = re.sub(r'[A-Za-z0-9]*@[A-Za-z]*\.?[A-Za-z0-9]*', "", text)
158
+ words = word_tokenize(text)
159
+ return ' '.join(words)
160
 
 
161
  llm = HuggingFaceEndpoint(
162
  repo_id="HuggingFaceH4/starchat2-15b-v0.1",
163
  task="text-generation",
 
170
  )
171
  chat_model = ChatHuggingFace(llm=llm)
172
 
173
+ model_name = "sentence-transformers/all-mpnet-base-v2"
174
+ embedding_llm = SentenceTransformerEmbeddings(model_name=model_name)
175
+ db = FAISS.load_local("faiss_index", embedding_llm, allow_dangerous_deserialization=True)
 
 
176
 
177
+ def print_like_dislike(x: gr.LikeData):
178
+ print(x.index, x.value, x.liked)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
 
180
+ def user(user_message, history):
181
+ if not len(user_message):
182
+ raise gr.Error("Chat messages cannot be empty")
183
+ return "", history + [[user_message, None]]
184
+
185
+ def user2(user_message, history, link):
186
+ if not len(user_message) or not len(link):
187
+ raise gr.Error("Chat messages or links cannot be empty")
188
+ combined_message = f"{link}\n{user_message}"
189
+ return "", history + [[combined_message, None]], link
190
+
191
+ def user3(user_message, history, file_path):
192
+ if not len(user_message) or not file_path:
193
+ raise gr.Error("Chat messages or flies cannot be empty")
194
+ combined_message = f"{file_path}\n{user_message}"
195
+ return "", history + [[combined_message, None]], file_path
196
+
197
+ def Chat_Message(history):
198
+ messages = [
199
+ SystemMessage(content="You are a helpful assistant."),
200
+ HumanMessage(content="Hi AI, how are you today?"),
201
+ AIMessage(content="I'm great thank you. How can I help you?")]
202
+
203
+ message=HumanMessage(content=history[-1][0])
204
+ messages.append(message)
205
  response = chat_model.invoke(messages)
206
  messages.append(response.content)
 
 
 
 
 
207
 
208
+ if len(messages) >= 8:
209
+ messages = messages[-8:]
210
+
211
+ history[-1][1] = ""
212
+ for character in response.content:
213
+ history[-1][1] += character
214
+ time.sleep(0.0025)
215
+ yield history
216
+
217
+ def Web_Search(history):
218
+ messages = [
219
+ SystemMessage(content="You are a helpful assistant."),
220
+ HumanMessage(content="Hi AI, how are you today?"),
221
+ AIMessage(content="I'm great thank you. How can I help you?")]
222
+
223
+ message=history[-1][0]
224
+
225
  similar_docs = db.similarity_search(message, k=3)
226
+
227
  if similar_docs:
228
  source_knowledge = "\n".join([x.page_content for x in similar_docs])
229
  else:
230
  source_knowledge = ""
231
+
232
  augmented_prompt = f"""
233
  If the answer to the next query is not contained in the Search, say 'No Answer Is Available' and then just give guidance for the query.
234
  Query: {message}
235
  Search:
236
  {source_knowledge}
237
  """
238
+
239
+ msg==HumanMessage(content=augmented_prompt)
240
+ messages.append(msg)
241
+ response = chat_model.invoke(msg)
 
242
  messages.append(response.content)
 
 
 
 
 
243
 
244
+ if len(messages) >= 8:
245
+ messages = messages[-8:]
246
+
247
+ history[-1][1] = ""
248
+ for character in response.content:
249
+ history[-1][1] += character
250
+ time.sleep(0.0025)
251
+ yield history
252
+
253
+ def Chart_Generator(history):
254
+ messages = [
255
+ SystemMessage(content="You are a helpful assistant."),
256
+ HumanMessage(content="Hi AI, how are you today?"),
257
+ AIMessage(content="I'm great thank you. How can I help you?")
258
+ ]
259
 
260
+ message = history[-1][0]
261
  chart_url = f"https://quickchart.io/natural/{message}"
262
  response = requests.get(chart_url)
263
 
264
  if response.status_code == 200:
265
+ image_html = f'<img src="{chart_url}" alt="Generated Chart" style="display: block; margin: auto; max-width: 100%; max-height: 100%;">'
266
+ message_with_description = f"Describe and analyse the content of this chart: {chart_url}"
267
 
268
  prompt = HumanMessage(content=message_with_description)
269
  messages.append(prompt)
270
 
271
+ res = chat_model.invoke(messages)
272
+ messages.append(res.content)
273
+
274
+ if len(messages) >= 8:
275
+ messages = messages[-8:]
276
+
277
+ combined_content = f'{image_html}<br>{res.content}'
278
+ else:
279
+ response_text = "Can't generate this image. Please provide valid chart details."
280
+ combined_content = response_text
281
+
282
+ history[-1][1] = ""
283
+ for character in combined_content:
284
+ history[-1][1] += character
285
+ time.sleep(0.0025)
286
+ yield history
287
+
288
+ def Link_Scratch(history):
289
+ messages = [
290
+ SystemMessage(content="You are a helpful assistant."),
291
+ HumanMessage(content="Hi AI, how are you today?"),
292
+ AIMessage(content="I'm great thank you. How can I help you?")
293
+ ]
294
+
295
+ combined_message = history[-1][0]
296
+
297
+ link = ""
298
+ user_message = ""
299
+ if "\n" in combined_message:
300
+ link, user_message = combined_message.split("\n", 1)
301
+ link = link.strip()
302
+ user_message = user_message.strip()
303
+
304
+ result = read_data(link)
305
+
306
+ if result in ["Unsupported type or format.", "Please provide a valid webpage link",
307
+ "Invalid YouTube URL. Please provide a valid YouTube link.",
308
+ "Please choose a YouTube video with available English or Arabic transcripts.",
309
+ "Invalid YouTube video URL. Please provide a valid YouTube video link."]:
310
+ response_message = result
311
+ else:
312
+ content_data = normalize_text(result)
313
+ if not content_data:
314
+ response_message = "The provided link is empty or does not contain any meaningful words."
315
+ else:
316
+ augmented_prompt = f"""
317
+ If the answer to the next query is not contained in the Link Content, say 'No Answer Is Available' and then just give guidance for the query.
318
+ Query: {user_message}
319
+ Link Content:
320
+ {content_data}
321
+ """
322
+ message = HumanMessage(content=augmented_prompt)
323
+ messages.append(message)
324
+ response = chat_model.invoke(messages)
325
+ messages.append(response.content)
326
+
327
+ if len(messages) >= 1:
328
+ messages = messages[-1:]
329
+
330
+ response_message = response.content
331
+
332
+ history[-1][1] = ""
333
+ for character in response_message:
334
+ history[-1][1] += character
335
+ time.sleep(0.0025)
336
+ yield history
337
+
338
+ def insert_line_breaks(text, every=8):
339
+ return '\n'.join(text[i:i+every] for i in range(0, len(text), every))
340
+
341
+ def display_file_name(file):
342
+ supported_extensions = ['.csv', '.txt', '.pdf', '.docx', '.pptx', '.xlsx', '.json', '.html', '.xml']
343
+ file_extension = os.path.splitext(file.name)[1]
344
+ if file_extension.lower() in supported_extensions:
345
+ file_name = os.path.basename(file.name)
346
+ file_name_with_breaks = insert_line_breaks(file_name)
347
+ icon_url = "https://img.icons8.com/ios-filled/50/0000FF/file.png"
348
+ return f"<div style='display: flex; align-items: center;'><img src='{icon_url}' alt='file-icon' style='width: 20px; height: 20px; margin-right: 5px;'><b style='color:blue;'>{file_name_with_breaks}</b></div>"
349
+ else:
350
+ raise gr.Error("( Supported File Types Only : PDF , CSV , TXT , DOCX , PPTX , XLSX , JSON , HTML , XML )")
351
+
352
+ def File_Interact(history,filepath):
353
+ messages = [
354
+ SystemMessage(content="You are a helpful assistant."),
355
+ HumanMessage(content="Hi AI, how are you today?"),
356
+ AIMessage(content="I'm great thank you. How can I help you?")]
357
+
358
+ combined_message = history[-1][0]
359
+
360
+ link = ""
361
+ user_message = ""
362
+ if "\n" in combined_message:
363
+ link, user_message = combined_message.split("\n", 1)
364
+ user_message = user_message.strip()
365
+
366
+ result = read_data(filepath)
367
 
368
+ if result == "Unsupported type or format.":
369
+ response_message = result
370
  else:
371
+ content_data = normalize_text(result)
372
+ if not content_data:
373
+ response_message = "The file is empty or does not contain any meaningful words."
374
+ else:
375
+ augmented_prompt = f"""
376
+ If the answer to the next query is not contained in the File Content, say 'No Answer Is Available' and then just give guidance for the query.
377
+ Query: {user_message}
378
+ File Content:
379
+ {content_data}
380
+ """
381
+ message = HumanMessage(content=augmented_prompt)
382
+ messages.append(message)
383
+ response = chat_model.invoke(messages)
384
+ messages.append(response.content)
385
+
386
+ if len(messages) >= 1:
387
+ messages = messages[-1:]
388
+
389
+ response_message = response.content
390
+
391
+ history[-1][1] = ""
392
+ for character in response_message:
393
+ history[-1][1] += character
394
+ time.sleep(0.0025)
395
+ yield history
396
+
397
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
398
+ with gr.Row():
399
+ gr.Markdown("""<span style='font-weight: bold; color: blue; font-size: large;'>Choose Your Mode</span>""")
400
+ gr.Markdown("""<div style='margin-left: -120px;'><span style='font-weight: bold; color: blue; font-size: xx-large;'>IT ASSISTANT</span></div>""")
401
+
402
+ with gr.Tab("Chat-Message"):
403
+ chatbot = gr.Chatbot(
404
+ [],
405
+ elem_id="chatbot",
406
+ bubble_full_width=False,
407
+ height=500,
408
+ placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Feel Free To Ask Me Anything Or Start A Conversation On Any Topic...</span>"
409
+ )
410
+ with gr.Row():
411
+ msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=10, container=False)
412
+ submit = gr.Button("➡️Send", scale=1)
413
+
414
+ clear = gr.ClearButton([msg, chatbot])
415
+
416
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chat_Message, chatbot, chatbot)
417
+ submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chat_Message, chatbot, chatbot)
418
+ chatbot.like(print_like_dislike, None, None)
419
+
420
+ with gr.Tab("Web-Search"):
421
+ chatbot = gr.Chatbot(
422
+ [],
423
+ elem_id="chatbot",
424
+ bubble_full_width=False,
425
+ height=500,
426
+ placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Demand What You Seek, And I'll Search The Web For The Most Relevant Information...</span>"
427
+ )
428
+ with gr.Row():
429
+ msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=10, container=False)
430
+ submit = gr.Button("➡️Send", scale=1)
431
+
432
+ clear = gr.ClearButton([msg, chatbot])
433
+
434
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Web_Search, chatbot, chatbot)
435
+ submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Web_Search, chatbot, chatbot)
436
+ chatbot.like(print_like_dislike, None, None)
437
+
438
+ with gr.Tab("Chart-Generator"):
439
+ chatbot = gr.Chatbot(
440
+ [],
441
+ elem_id="chatbot",
442
+ bubble_full_width=False,
443
+ height=500,
444
+ placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Request Any Chart Or Graph By Giving The Data Or A Description, And I'll Create It...</span>"
445
+ )
446
+
447
+ with gr.Row():
448
+ msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=10, container=False)
449
+ submit = gr.Button("➡️Send", scale=1)
450
+
451
+ clear = gr.ClearButton([msg, chatbot])
452
+
453
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chart_Generator, chatbot, chatbot)
454
+ submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chart_Generator, chatbot, chatbot)
455
+ chatbot.like(print_like_dislike, None, None)
456
+
457
+ with gr.Tab("Link-Scratch"):
458
+ chatbot = gr.Chatbot(
459
+ [],
460
+ elem_id="chatbot",
461
+ bubble_full_width=False,
462
+ height=500,
463
+ placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Provide A Link Of Web page Or YouTube Video And Inquire About Its Details...</span>"
464
+ )
465
+
466
+ with gr.Row():
467
+ msg1 = gr.Textbox(show_label=False, placeholder="Paste your link...", scale=4, container=False)
468
+ msg2 = gr.Textbox(show_label=False, placeholder="Type a message...", scale=7, container=False)
469
+ submit = gr.Button("➡️Send", scale=1)
470
+
471
+ clear = gr.ClearButton([msg2, chatbot, msg1])
472
+
473
+ msg1.submit(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
474
+ msg2.submit(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
475
+ submit.click(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
476
+ chatbot.like(print_like_dislike, None, None)
477
+
478
+ with gr.Tab("File-Interact"):
479
+ chatbot = gr.Chatbot(
480
+ [],
481
+ elem_id="chatbot",
482
+ bubble_full_width=False,
483
+ height=500,
484
+ placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Upload A File And Explore Questions Related To Its Content...</span><br>( Supported File Types Only : PDF , CSV , TXT , DOCX , PPTX , XLSX , JSON , HTML , XML )"
485
+ )
486
+
487
+ with gr.Column():
488
+ with gr.Row():
489
+ filepath = gr.UploadButton("Upload a file", file_count="single", scale=1)
490
+ msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=7, container=False)
491
+ submit = gr.Button("➡️Send", scale=1)
492
+ with gr.Row():
493
+ file_output = gr.HTML("<div style='height: 20px; width: 30px;'></div>")
494
+ clear = gr.ClearButton([msg, filepath, chatbot,file_output],scale=6)
495
+
496
+ filepath.upload(display_file_name, inputs=filepath, outputs=file_output)
497
+
498
+ msg.submit(user3, [msg, chatbot, file_output], [msg, chatbot, file_output], queue=True).then(File_Interact, [chatbot, filepath],chatbot)
499
+ submit.click(user3, [msg, chatbot, file_output], [msg, chatbot, file_output], queue=True).then(File_Interact, [chatbot, filepath],chatbot)
500
+ chatbot.like(print_like_dislike, None, None)
501
+
502
+ demo.queue(max_size=5)
503
+ demo.launch(max_file_size="5mb",show_api=False)