OFA / evaluate.py
root
init
93b9482
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import json
from itertools import chain
import numpy as np
import torch
import torch.distributed as dist
from fairseq import distributed_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.utils import reset_logging
from omegaconf import DictConfig
from utils import checkpoint_utils
from utils.eval_utils import eval_step
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("ofa.evaluate")
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
def main(cfg: DictConfig):
utils.import_user_module(cfg.common)
reset_logging()
logger.info(cfg)
assert (
cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
), "Must specify batch size either with --max-tokens or --batch-size"
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_fp16 = cfg.common.fp16
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
if use_cuda:
torch.cuda.set_device(cfg.distributed_training.device_id)
# Load ensemble
overrides = eval(cfg.common_eval.model_overrides)
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
# Move models to GPU
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(cfg.dataset.gen_subset),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
task.max_positions(), *[m.max_positions() for m in models]
),
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
seed=cfg.common.seed,
num_shards=cfg.distributed_training.distributed_world_size,
shard_id=cfg.distributed_training.distributed_rank,
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
results = []
score_sum = torch.FloatTensor([0]).cuda()
score_cnt = torch.FloatTensor([0]).cuda()
for sample in progress:
if "net_input" not in sample:
continue
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if cfg.common.fp16 else sample
with torch.no_grad():
result, scores = eval_step(task, generator, models, sample)
results += result
score_sum += sum(scores) if scores is not None else 0
score_cnt += len(scores) if scores is not None else 0
progress.log({"sentences": sample["nsentences"]})
gather_results = None
if cfg.distributed_training.distributed_world_size > 1:
gather_results = [None for _ in range(dist.get_world_size())]
dist.all_gather_object(gather_results, results)
dist.all_reduce(score_sum.data)
dist.all_reduce(score_cnt.data)
if score_cnt.item() > 0:
logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
))
if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset))
gather_results = list(chain(*gather_results)) if gather_results is not None else results
with open(output_path, 'w') as fw:
json.dump(gather_results, fw)
def cli_main():
parser = options.get_generation_parser()
args = options.parse_args_and_arch(parser)
cfg = convert_namespace_to_omegaconf(args)
distributed_utils.call_main(cfg, main)
if __name__ == "__main__":
cli_main()