|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import json |
|
from itertools import chain |
|
|
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
from fairseq import distributed_utils, options, tasks, utils |
|
from fairseq.dataclass.utils import convert_namespace_to_omegaconf |
|
from fairseq.logging import progress_bar |
|
from fairseq.utils import reset_logging |
|
from omegaconf import DictConfig |
|
|
|
from utils import checkpoint_utils |
|
from utils.eval_utils import eval_step |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
level=os.environ.get("LOGLEVEL", "INFO").upper(), |
|
stream=sys.stdout, |
|
) |
|
logger = logging.getLogger("ofa.evaluate") |
|
|
|
|
|
def apply_half(t): |
|
if t.dtype is torch.float32: |
|
return t.to(dtype=torch.half) |
|
return t |
|
|
|
|
|
def main(cfg: DictConfig): |
|
utils.import_user_module(cfg.common) |
|
|
|
reset_logging() |
|
logger.info(cfg) |
|
|
|
assert ( |
|
cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None |
|
), "Must specify batch size either with --max-tokens or --batch-size" |
|
|
|
|
|
if cfg.common.seed is not None and not cfg.generation.no_seed_provided: |
|
np.random.seed(cfg.common.seed) |
|
utils.set_torch_seed(cfg.common.seed) |
|
|
|
use_fp16 = cfg.common.fp16 |
|
use_cuda = torch.cuda.is_available() and not cfg.common.cpu |
|
|
|
if use_cuda: |
|
torch.cuda.set_device(cfg.distributed_training.device_id) |
|
|
|
|
|
overrides = eval(cfg.common_eval.model_overrides) |
|
logger.info("loading model(s) from {}".format(cfg.common_eval.path)) |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( |
|
utils.split_paths(cfg.common_eval.path), |
|
arg_overrides=overrides, |
|
suffix=cfg.checkpoint.checkpoint_suffix, |
|
strict=(cfg.checkpoint.checkpoint_shard_count == 1), |
|
num_shards=cfg.checkpoint.checkpoint_shard_count, |
|
) |
|
|
|
|
|
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task) |
|
|
|
|
|
for model in models: |
|
model.eval() |
|
if use_fp16: |
|
model.half() |
|
if use_cuda and not cfg.distributed_training.pipeline_model_parallel: |
|
model.cuda() |
|
model.prepare_for_inference_(cfg) |
|
|
|
|
|
itr = task.get_batch_iterator( |
|
dataset=task.dataset(cfg.dataset.gen_subset), |
|
max_tokens=cfg.dataset.max_tokens, |
|
max_sentences=cfg.dataset.batch_size, |
|
max_positions=utils.resolve_max_positions( |
|
task.max_positions(), *[m.max_positions() for m in models] |
|
), |
|
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, |
|
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple, |
|
seed=cfg.common.seed, |
|
num_shards=cfg.distributed_training.distributed_world_size, |
|
shard_id=cfg.distributed_training.distributed_rank, |
|
num_workers=cfg.dataset.num_workers, |
|
data_buffer_size=cfg.dataset.data_buffer_size, |
|
).next_epoch_itr(shuffle=False) |
|
progress = progress_bar.progress_bar( |
|
itr, |
|
log_format=cfg.common.log_format, |
|
log_interval=cfg.common.log_interval, |
|
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), |
|
) |
|
|
|
|
|
generator = task.build_generator(models, cfg.generation) |
|
|
|
results = [] |
|
score_sum = torch.FloatTensor([0]).cuda() |
|
score_cnt = torch.FloatTensor([0]).cuda() |
|
for sample in progress: |
|
if "net_input" not in sample: |
|
continue |
|
sample = utils.move_to_cuda(sample) if use_cuda else sample |
|
sample = utils.apply_to_sample(apply_half, sample) if cfg.common.fp16 else sample |
|
with torch.no_grad(): |
|
result, scores = eval_step(task, generator, models, sample) |
|
results += result |
|
score_sum += sum(scores) if scores is not None else 0 |
|
score_cnt += len(scores) if scores is not None else 0 |
|
progress.log({"sentences": sample["nsentences"]}) |
|
|
|
gather_results = None |
|
if cfg.distributed_training.distributed_world_size > 1: |
|
gather_results = [None for _ in range(dist.get_world_size())] |
|
dist.all_gather_object(gather_results, results) |
|
dist.all_reduce(score_sum.data) |
|
dist.all_reduce(score_cnt.data) |
|
if score_cnt.item() > 0: |
|
logger.info("score_sum: {}, score_cnt: {}, score: {}".format( |
|
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4) |
|
)) |
|
|
|
if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0: |
|
os.makedirs(cfg.common_eval.results_path, exist_ok=True) |
|
output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset)) |
|
gather_results = list(chain(*gather_results)) if gather_results is not None else results |
|
with open(output_path, 'w') as fw: |
|
json.dump(gather_results, fw) |
|
|
|
|
|
def cli_main(): |
|
parser = options.get_generation_parser() |
|
args = options.parse_args_and_arch(parser) |
|
cfg = convert_namespace_to_omegaconf(args) |
|
distributed_utils.call_main(cfg, main) |
|
|
|
|
|
if __name__ == "__main__": |
|
cli_main() |