|
|
|
|
|
import torch |
|
from .layers import STFT |
|
|
|
|
|
class Denoiser(torch.nn.Module): |
|
""" Removes model bias from audio produced with waveglow """ |
|
|
|
def __init__(self, waveglow, filter_length=1024, n_overlap=4, |
|
win_length=1024, mode='zeros'): |
|
super(Denoiser, self).__init__() |
|
self.stft = STFT(filter_length=filter_length, |
|
hop_length=int(filter_length/n_overlap), |
|
win_length=win_length).cuda() |
|
if mode == 'zeros': |
|
mel_input = torch.zeros( |
|
(1, 80, 88), |
|
dtype=waveglow.upsample.weight.dtype, |
|
device=waveglow.upsample.weight.device) |
|
elif mode == 'normal': |
|
mel_input = torch.randn( |
|
(1, 80, 88), |
|
dtype=waveglow.upsample.weight.dtype, |
|
device=waveglow.upsample.weight.device) |
|
else: |
|
raise Exception("Mode {} if not supported".format(mode)) |
|
|
|
with torch.no_grad(): |
|
bias_audio = waveglow.infer(mel_input, sigma=0.0).float() |
|
bias_spec, _ = self.stft.transform(bias_audio) |
|
|
|
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) |
|
|
|
def forward(self, audio, strength=0.1): |
|
audio_spec, audio_angles = self.stft.transform(audio.cuda().float()) |
|
audio_spec_denoised = audio_spec - self.bias_spec * strength |
|
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) |
|
audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) |
|
return audio_denoised |
|
|