|
import string |
|
import math |
|
|
|
import torch |
|
|
|
from data import data_utils |
|
|
|
|
|
def get_symbols_to_strip_from_output(generator): |
|
if hasattr(generator, "symbols_to_strip_from_output"): |
|
return generator.symbols_to_strip_from_output |
|
else: |
|
return {generator.bos, generator.eos} |
|
|
|
|
|
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): |
|
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) |
|
if bpe is not None: |
|
x = bpe.decode(x) |
|
if tokenizer is not None: |
|
x = tokenizer.decode(x) |
|
return x |
|
|
|
|
|
def eval_caption(task, generator, models, sample): |
|
transtab = str.maketrans({key: None for key in string.punctuation}) |
|
hypos = task.inference_step(generator, models, sample) |
|
results = [] |
|
for i, sample_id in enumerate(sample["id"].tolist()): |
|
detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator) |
|
results.append({"image_id": str(sample_id), "caption": detok_hypo_str.translate(transtab).strip()}) |
|
return results, None |
|
|
|
|
|
def eval_refcoco(task, generator, models, sample): |
|
def _calculate_ap_score(hyps, refs, thresh=0.5): |
|
interacts = torch.cat( |
|
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]), |
|
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])], |
|
dim=1 |
|
) |
|
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) |
|
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1]) |
|
interacts_w = interacts[:, 2] - interacts[:, 0] |
|
interacts_h = interacts[:, 3] - interacts[:, 1] |
|
area_interacts = interacts_w * interacts_h |
|
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6) |
|
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float() |
|
|
|
gen_out = task.inference_step(generator, models, sample) |
|
hyps = [] |
|
for i in range(len(gen_out)): |
|
hyps.append(gen_out[i][0]["tokens"][:-1] - len(task.src_dict) + task.cfg.num_bins) |
|
hyps = torch.stack(hyps, dim=0) |
|
hyps = hyps / (task.cfg.num_bins - 1) * task.cfg.max_image_size |
|
hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1) |
|
hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1) |
|
|
|
results = [ |
|
{"uniq_id": sample_id, |
|
"box": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]} |
|
for i, sample_id in enumerate(sample["id"].tolist()) |
|
] |
|
scores = _calculate_ap_score(hyps, sample['region_coords'].float()) |
|
return results, scores |
|
|
|
|
|
def eval_step(task, generator, models, sample): |
|
if task.cfg._name == 'caption': |
|
return eval_caption(task, generator, models, sample) |
|
elif task.cfg._name == 'refcoco': |
|
return eval_refcoco(task, generator, models, sample) |
|
else: |
|
raise NotImplementedError |
|
|