git-base-coco / app.py
mouaddb's picture
Update app.py
8517128
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
import torch
import time
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
device = "cuda" if torch.cuda.is_available() else "cpu"
git_model_base.to(device)
def generate_caption(processor, model, image, tokenizer=None):
inputs = processor(images=image, return_tensors="pt").to(device)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
if tokenizer is not None:
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
else:
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def generate_captions(image):
start = time.time()
caption_git_base = generate_caption(git_processor_base, git_model_base, image)
end = time.time()
print(end - start)
return caption_git_base, end - start
examples = [["test-1.jpeg"], ["test-2.jpeg"], ["test-3.jpeg"], ["test-4.jpeg"], ["test-5.jpeg"], ["test-6.jpg"]]
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Time Elapsed")]
interface = gr.Interface(fn=generate_captions,
inputs=gr.inputs.Image(type="pil"),
outputs=outputs,
examples=examples,
enable_queue=True)
interface.launch(debug=True)