Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel | |
import torch | |
import time | |
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco") | |
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
git_model_base.to(device) | |
def generate_caption(processor, model, image, tokenizer=None): | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) | |
if tokenizer is not None: | |
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
else: | |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_caption | |
def generate_captions(image): | |
start = time.time() | |
caption_git_base = generate_caption(git_processor_base, git_model_base, image) | |
end = time.time() | |
print(end - start) | |
return caption_git_base, end - start | |
examples = [["test-1.jpeg"], ["test-2.jpeg"], ["test-3.jpeg"], ["test-4.jpeg"], ["test-5.jpeg"], ["test-6.jpg"]] | |
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Time Elapsed")] | |
interface = gr.Interface(fn=generate_captions, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=outputs, | |
examples=examples, | |
enable_queue=True) | |
interface.launch(debug=True) |