Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,26 +5,10 @@ import torch
|
|
5 |
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
6 |
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
7 |
|
8 |
-
git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
9 |
-
git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
10 |
-
|
11 |
-
blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
-
blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
-
|
14 |
-
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
15 |
-
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
16 |
-
|
17 |
-
vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
18 |
-
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
19 |
-
vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
20 |
-
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
git_model_base.to(device)
|
24 |
-
|
25 |
-
git_model_large.to(device)
|
26 |
-
blip_model_large.to(device)
|
27 |
-
vitgpt_model.to(device)
|
28 |
|
29 |
def generate_caption(processor, model, image, tokenizer=None):
|
30 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
@@ -42,19 +26,11 @@ def generate_caption(processor, model, image, tokenizer=None):
|
|
42 |
def generate_captions(image):
|
43 |
caption_git_base = generate_caption(git_processor_base, git_model_base, image)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
|
48 |
-
|
49 |
-
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
50 |
-
|
51 |
-
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
52 |
-
|
53 |
-
return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt
|
54 |
|
55 |
|
56 |
examples = [["test-1.jpeg"], ["test-2.jpeg"], ["test-3.jpeg"], ["test-4.jpeg"], ["test-5.jpeg"], ["test-6.jpg"]]
|
57 |
-
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base")
|
58 |
|
59 |
|
60 |
interface = gr.Interface(fn=generate_captions,
|
|
|
5 |
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
6 |
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
git_model_base.to(device)
|
11 |
+
|
|
|
|
|
|
|
12 |
|
13 |
def generate_caption(processor, model, image, tokenizer=None):
|
14 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
|
26 |
def generate_captions(image):
|
27 |
caption_git_base = generate_caption(git_processor_base, git_model_base, image)
|
28 |
|
29 |
+
return caption_git_base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
examples = [["test-1.jpeg"], ["test-2.jpeg"], ["test-3.jpeg"], ["test-4.jpeg"], ["test-5.jpeg"], ["test-6.jpg"]]
|
33 |
+
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base")]
|
34 |
|
35 |
|
36 |
interface = gr.Interface(fn=generate_captions,
|