import gradio as gr from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel import torch import time git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco") git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") device = "cuda" if torch.cuda.is_available() else "cpu" git_model_base.to(device) def generate_caption(processor, model, image, tokenizer=None): inputs = processor(images=image, return_tensors="pt").to(device) generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) if tokenizer is not None: generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] else: generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption def generate_captions(image): start = time.time() caption_git_base = generate_caption(git_processor_base, git_model_base, image) end = time.time() print(end - start) return caption_git_base, end - start examples = [["test-1.jpeg"], ["test-2.jpeg"], ["test-3.jpeg"], ["test-4.jpeg"], ["test-5.jpeg"], ["test-6.jpg"]] outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Time Elapsed")] interface = gr.Interface(fn=generate_captions, inputs=gr.inputs.Image(type="pil"), outputs=outputs, examples=examples, enable_queue=True) interface.launch(debug=True)