Spaces:
Paused
Paused
import peft | |
import bitsandbytes | |
import datasets | |
import accelerate | |
import loralib | |
import transformers | |
import sacremoses | |
import sentencepiece | |
import gradio as gr | |
import os | |
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM,AutoTokenizer, LlamaForCausalLM | |
import joblib | |
from deployML import predd | |
import time | |
#load the chatbot | |
model = LlamaForCausalLM.from_pretrained( | |
"medalpaca/medalpaca-7b", | |
return_dict=True, | |
load_in_8bit=True, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained("medalpaca/medalpaca-7b") | |
#load the first interface | |
loaded_rf = joblib.load("model_joblib") | |
def fn(*args): | |
all_symptoms = [symptom for symptom_list in args for symptom in symptom_list] | |
if len(all_symptoms) > 17: | |
raise gr.Error("Please select a maximum of 17 symptoms.") | |
elif len(all_symptoms) < 3: | |
raise gr.Error("Please select at least 3 symptoms.") | |
symptoms = all_symptoms # Update global symptoms list | |
return predd(loaded_rf,symptoms) | |
demo = gr.Interface( | |
fn, [ | |
gr.CheckboxGroup(['itching', 'skin rash', 'nodal skin eruptions', 'dischromic patches'], label='Skin Issues'), | |
gr.CheckboxGroup(['continuous sneezing', 'shivering', 'chills', 'cough', 'breathlessness', 'phlegm', 'blood in sputum', 'throat irritation', 'runny nose', 'congestion', 'loss of smell', 'sinus pressure'], label='Respiratory Problems'), | |
gr.CheckboxGroup(['stomach pain', 'acidity', 'ulcers on tongue', 'vomiting', 'nausea', 'loss of appetite', 'abdominal pain', 'burning micturition', 'spotting urination', 'passage of gases', 'internal itching', 'indigestion', 'muscle wasting', 'patches in throat', 'constipation'], label='Digestive Complaints'), | |
gr.CheckboxGroup(['high fever', 'fatigue', 'weight loss', 'restlessness', 'lethargy', 'mild fever'], label='Fever and Fatigue'), | |
gr.CheckboxGroup(['blurred and distorted vision', 'red spots over body', 'pain behind the eyes', 'redness of eyes'], label='Vision and Eye Problems'), | |
gr.CheckboxGroup(['chest pain', 'fast heart rate', 'swelling of stomach'], label='Cardiovascular Issues'), | |
gr.CheckboxGroup(['muscle pain', 'joint pain', 'pain in anal region', 'painful walking', 'movement stiffness'], label='Joint and Muscle Pain'), | |
gr.CheckboxGroup(['headache', 'dizziness', 'loss of balance', 'lack of concentration', 'stiff neck', 'depression', 'irritability', 'visual disturbances', 'back pain', 'weakness in limbs', 'neck pain', 'weakness of one body side', 'altered sensorium'], label='Neurological Symptoms'), | |
gr.CheckboxGroup(['dark urine', 'sweating', 'mucoid sputum', 'toxic look (typhos)', 'bladder discomfort', 'foul smell of urine', 'continuous feel of urine'], label='Urinary Issues'), | |
gr.CheckboxGroup(['skin peeling', 'silver like dusting', 'small dents in nails', 'inflammatory nails', 'blister', 'red sore around nose', 'yellow crust ooze'], label='Skin Abnormalities'), | |
gr.CheckboxGroup(['family history', 'headache', 'mood swings', 'anxiety', 'slurred speech', 'palpitations', 'drying and tingling lips'], label='Psychological Symptoms'), | |
gr.CheckboxGroup(['knee pain', 'hip joint pain', 'swelling joints'], label='Joint and Bone Issues'), | |
gr.CheckboxGroup(['spinning movements', 'unsteadiness'], label='Neurological Movements') | |
], | |
outputs="textbox",allow_flagging="never" | |
) | |
def predict(message, history): | |
prompt = f""" | |
Answer the following question: | |
{message}/n | |
Answer: | |
""" | |
batch = tokenizer(prompt, return_tensors='pt') | |
with torch.cuda.amp.autocast(): | |
output_tokens = model.generate(**batch, max_new_tokens=100) | |
return tokenizer.decode(output_tokens[0], skip_special_tokens=True).replace(prompt,"") | |
Fmessage="Hi, How can I help you" | |
chatbot=gr.ChatInterface(predict, chatbot=gr.Chatbot(value=[(None, Fmessage)],),clear_btn=None, retry_btn=None, undo_btn=None) | |
gr.TabbedInterface( | |
[demo, chatbot], ["symptoms checker", "chatbot"] | |
).launch() |