File size: 10,300 Bytes
abcf6b2
 
 
 
 
 
 
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
 
 
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
 
fff6c5d
abcf6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import streamlit as st
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModel
import torch
from typing import Dict, List, Tuple
import plotly.express as px
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import plotly.graph_objects as go

# Set Streamlit page configuration
st.set_page_config(
    page_title="Token & Embedding Visualizer",
    layout="wide"
)

# Define colors for different token types
COLORS = {
    'Special': '#FFB6C1', 
    'Subword': '#98FB98', 
    'Word': '#87CEFA',    
    'Punctuation': '#DDA0DD'
}

@st.cache_resource
def load_models_and_tokenizers() -> Tuple[Dict, Dict]:
    """Load tokenizers and models with error handling"""
    model_names = {
        "BERT": "bert-base-uncased",
        "RoBERTa": "roberta-base",
        "DistilBERT": "distilbert-base-uncased",
        "MPNet": "microsoft/mpnet-base",
        "DeBERTa": "microsoft/deberta-base",
    }
    
    tokenizers = {}
    models = {}
    
    for name, model_name in model_names.items():
        try:
            tokenizers[name] = AutoTokenizer.from_pretrained(model_name)
            models[name] = AutoModel.from_pretrained(model_name)
            st.success(f"βœ“ Loaded {name}")
        except Exception as e:
            st.warning(f"Γ— Failed to load {name}: {str(e)}")
    
    return tokenizers, models

def classify_token(token: str) -> str:
    """Classify token type based on its characteristics"""
    if token.startswith(('##', '▁', 'Δ ', '_', '.')):
        return 'Subword'
    elif token in ['[CLS]', '[SEP]', '<s>', '</s>', '<pad>', '[PAD]', '[MASK]', '<mask>']:
        return 'Special'
    elif token in [',', '.', '!', '?', ';', ':', '"', "'", '(', ')', '[', ']', '{', '}']:
        return 'Punctuation'
    else:
        return 'Word'

@torch.no_grad()
def get_embeddings(text: str, model, tokenizer) -> Tuple[torch.Tensor, List[str]]:
    """Get embeddings and tokens from the model and tokenizer"""
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(**inputs)
    embeddings = outputs.last_hidden_state[0]  # Get first batch
    tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
    return embeddings, tokens

def visualize_embeddings(embeddings: torch.Tensor, tokens: List[str], method: str = 'PCA') -> go.Figure:
    """Visualize embeddings using PCA or t-SNE"""
    embed_array = embeddings.numpy()
    
    if method == 'PCA':
        reducer = PCA(n_components=3)
        reduced_embeddings = reducer.fit_transform(embed_array)
        variance_explained = reducer.explained_variance_ratio_
        method_info = f"Total variance explained: {sum(variance_explained):.2%}"
    else:  # t-SNE
        reducer = TSNE(n_components=3, random_state=42, perplexity=min(30, len(tokens)-1))
        reduced_embeddings = reducer.fit_transform(embed_array)
        method_info = "t-SNE embedding (perplexity: {})".format(reducer.perplexity)
    
    df = pd.DataFrame({
        'x': reduced_embeddings[:, 0],
        'y': reduced_embeddings[:, 1],
        'z': reduced_embeddings[:, 2],
        'token': tokens,
        'type': [classify_token(t) for t in tokens]
    })
    
    fig = go.Figure()
    
    for token_type in df['type'].unique():
        mask = df['type'] == token_type
        fig.add_trace(go.Scatter3d(
            x=df[mask]['x'],
            y=df[mask]['y'],
            z=df[mask]['z'],
            mode='markers+text',
            name=token_type,
            text=df[mask]['token'],
            hovertemplate="Token: %{text}<br>Type: " + token_type + "<extra></extra>",
            marker=dict(
                size=8,
                color=COLORS[token_type],
                opacity=0.8
            )
        ))
    
    fig.update_layout(
        title=f"{method} Visualization of Token Embeddings<br><sup>{method_info}</sup>",
        scene=dict(
            xaxis_title=f"{method}_1",
            yaxis_title=f"{method}_2",
            zaxis_title=f"{method}_3"
        ),
        width=800,
        height=800
    )
    
    return fig

def compute_token_similarities(embeddings: torch.Tensor, tokens: List[str]) -> pd.DataFrame:
    """Compute cosine similarities between token embeddings"""
    normalized_embeddings = embeddings / embeddings.norm(dim=1, keepdim=True)
    similarities = torch.mm(normalized_embeddings, normalized_embeddings.t())
    
    sim_df = pd.DataFrame(similarities.numpy(), columns=tokens, index=tokens)
    return sim_df

# Streamlit app title
st.title("πŸ”€ Token & Embedding Visualizer")

# Load models and tokenizers
tokenizers, models = load_models_and_tokenizers()

# Create tabs for different visualizations
token_tab, embedding_tab, similarity_tab = st.tabs([
    "Token Visualization",
    "Embedding Visualization",
    "Token Similarities"
])

# Default text for analysis
default_text = "Hello world! Let's analyze how neural networks process language. The transformer architecture revolutionized NLP."
text_input = st.text_area("Enter text to analyze:", value=default_text, height=100)

with token_tab:
    st.markdown("""
    Token colors represent:
    - 🟦 Blue: Complete words
    - 🟩 Green: Subwords
    - 🟨 Pink: Special tokens
    - πŸŸͺ Purple: Punctuation
    """)
    
    selected_models = st.multiselect(
        "Select models to compare tokens",
        options=list(tokenizers.keys()),
        default=["BERT", "RoBERTa"],
        max_selections=4
    )
    
    if text_input and selected_models:
        cols = st.columns(len(selected_models))
        
        for idx, model_name in enumerate(selected_models):
            with cols[idx]:
                st.subheader(model_name)
                tokenizer = tokenizers[model_name]
                
                tokens = tokenizer.tokenize(text_input)
                token_ids = tokenizer.encode(text_input)
                
                if len(tokens) != len(token_ids):
                    tokens = tokenizer.convert_ids_to_tokens(token_ids)
                
                st.metric("Tokens", len(tokens))
                
                html_tokens = []
                for token in tokens:
                    color = COLORS[classify_token(token)]
                    token_text = token.replace('<', '&lt;').replace('>', '&gt;')
                    html_tokens.append(
                        f'<span style="background-color: {color}; padding: 2px 4px; '
                        f'margin: 2px; border-radius: 3px; font-family: monospace;">'
                        f'{token_text}</span>'
                    )
                
                st.markdown(
                    '<div style="background-color: white; padding: 10px; '
                    'border-radius: 5px; border: 1px solid #ddd;">'
                    f'{"".join(html_tokens)}</div>',
                    unsafe_allow_html=True
                )

with embedding_tab:
    st.markdown("""
    This tab shows how tokens are embedded in the model's vector space.
    - Compare different dimensionality reduction techniques
    - Observe clustering of similar tokens
    - Explore the relationship between different token types
    """)
    
    col1, col2 = st.columns([2, 1])
    
    with col1:
        selected_model = st.selectbox(
            "Select model for embedding visualization",
            options=list(models.keys())
        )
    
    with col2:
        viz_method = st.radio(
            "Select visualization method",
            options=['PCA', 't-SNE'],
            horizontal=True
        )
    
    if text_input and selected_model:
        with st.spinner(f"Generating embeddings with {selected_model}..."):
            embeddings, tokens = get_embeddings(
                text_input,
                models[selected_model],
                tokenizers[selected_model]
            )
            
            fig = visualize_embeddings(embeddings, tokens, viz_method)
            st.plotly_chart(fig, use_container_width=True)
            
            with st.expander("Embedding Statistics"):
                embed_stats = pd.DataFrame({
                    'Token': tokens,
                    'Type': [classify_token(t) for t in tokens],
                    'Mean': embeddings.mean(dim=1).numpy(),
                    'Std': embeddings.std(dim=1).numpy(),
                    'Norm': torch.norm(embeddings, dim=1).numpy()
                })
                st.dataframe(embed_stats, use_container_width=True)

with similarity_tab:
    st.markdown("""
    Explore token similarities based on their embedding representations.
    - Darker colors indicate higher similarity
    - Hover over cells to see exact similarity scores
    """)
    
    if text_input and selected_model:
        with st.spinner("Computing token similarities..."):
            sim_df = compute_token_similarities(embeddings, tokens)
            
            fig = px.imshow(
                sim_df,
                labels=dict(color="Cosine Similarity"),
                color_continuous_scale="RdYlBu",
                aspect="auto"
            )
            fig.update_layout(
                title="Token Similarity Matrix",
                width=800,
                height=800
            )
            st.plotly_chart(fig, use_container_width=True)
            
            st.subheader("Most Similar Token Pairs")
            sim_matrix = sim_df.values
            np.fill_diagonal(sim_matrix, 0)  # Exclude self-similarities
            top_k = min(10, len(tokens))
            
            pairs = []
            for i in range(len(tokens)):
                for j in range(i+1, len(tokens)):
                    pairs.append((tokens[i], tokens[j], sim_matrix[i, j]))
            
            top_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)[:top_k]
            
            for token1, token2, sim in top_pairs:
                st.write(f"'{token1}' β€” '{token2}': {sim:.3f}")

st.markdown("---")
st.markdown("""
    πŸ’‘ **Tips:**
    - Try comparing how different models tokenize and embed the same text
    - Use PCA for global structure and t-SNE for local relationships
    - Check the similarity matrix for interesting token relationships
    - Experiment with different text types (technical, casual, mixed)
""")