Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
4 |
from PIL import Image
|
5 |
import rasterio
|
6 |
from rasterio.windows import Window
|
@@ -11,11 +11,11 @@ import os
|
|
11 |
import albumentations as albu
|
12 |
import segmentation_models_pytorch as smp
|
13 |
from albumentations.pytorch.transforms import ToTensorV2
|
14 |
-
import geopandas as gpd
|
15 |
from shapely.geometry import shape
|
16 |
from shapely.ops import unary_union
|
17 |
from rasterio.features import shapes
|
18 |
-
|
|
|
19 |
|
20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
ENCODER = 'se_resnext50_32x4d'
|
@@ -25,7 +25,7 @@ ENCODER_WEIGHTS = 'imagenet'
|
|
25 |
# Load and prepare the model
|
26 |
@st.cache_resource
|
27 |
def load_model():
|
28 |
-
model = torch.load('deeplabv3 v15.pth', map_location=DEVICE)
|
29 |
model.eval().float()
|
30 |
return model
|
31 |
|
@@ -76,7 +76,7 @@ def process_and_predict(image, model):
|
|
76 |
return mask_image
|
77 |
|
78 |
|
79 |
-
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4,threshold=0.6):
|
80 |
tiles = []
|
81 |
|
82 |
with rasterio.open(map_file) as src:
|
@@ -113,8 +113,8 @@ def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4,thresh
|
|
113 |
"width": tile_size,
|
114 |
"transform": rasterio.windows.transform(window, src.transform)
|
115 |
})
|
116 |
-
tile_image = np.array(tile_image)
|
117 |
|
|
|
118 |
preprocessed_tile = preprocess(image=tile_image)['image']
|
119 |
batch_images.append(preprocessed_tile)
|
120 |
batch_metas.append(out_meta)
|
@@ -124,7 +124,7 @@ def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4,thresh
|
|
124 |
|
125 |
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
|
126 |
with torch.no_grad():
|
127 |
-
batch_masks = model(batch_tensor
|
128 |
|
129 |
batch_masks = torch.sigmoid(batch_masks)
|
130 |
batch_masks = (batch_masks > threshold).float()
|
@@ -142,58 +142,76 @@ def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4,thresh
|
|
142 |
return tiles
|
143 |
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
def create_vector_mask(tiles, output_path):
|
150 |
all_polygons = []
|
151 |
for mask_array, meta in tiles:
|
152 |
-
|
153 |
mask_array = (mask_array > 0).astype(np.uint8)
|
154 |
|
155 |
-
# Get shapes from the mask
|
156 |
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
|
157 |
|
158 |
-
#
|
159 |
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
|
160 |
|
161 |
all_polygons.extend(polygons)
|
162 |
-
#
|
163 |
union_polygon = unary_union(all_polygons)
|
164 |
-
#
|
165 |
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
|
166 |
# Save to file
|
167 |
gdf.to_file(output_path)
|
168 |
|
169 |
-
#
|
170 |
area_m2 = gdf.to_crs(epsg=3857).area.sum()
|
171 |
-
# Convert to hectares
|
172 |
|
173 |
return gdf, area_m2
|
174 |
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
def main():
|
177 |
-
st.title("PV
|
178 |
|
179 |
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
|
180 |
|
181 |
if uploaded_file is not None:
|
182 |
st.write("File uploaded successfully!")
|
183 |
|
184 |
-
threshold= st.slider(
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
)
|
191 |
-
overlap= st.slider(
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
)
|
198 |
st.write('Selected threshold value:', threshold)
|
199 |
st.write('Selected overlap value:', overlap)
|
@@ -205,7 +223,7 @@ def main():
|
|
205 |
f.write(uploaded_file.getbuffer())
|
206 |
|
207 |
best_model.float()
|
208 |
-
tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=overlap, batch_size=4,threshold=threshold)
|
209 |
|
210 |
st.write("Processing complete!")
|
211 |
|
@@ -213,7 +231,7 @@ def main():
|
|
213 |
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
|
214 |
|
215 |
st.write("Vector mask created successfully!")
|
216 |
-
st.write(f"Total area occupied by
|
217 |
|
218 |
# Offer the shapefile for download
|
219 |
shp_files = [f for f in os.listdir() if
|
@@ -232,11 +250,12 @@ def main():
|
|
232 |
mime="application/zip"
|
233 |
)
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
239 |
|
240 |
|
241 |
if __name__ == "__main__":
|
242 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import geopandas as gpd
|
3 |
+
import leafmap.foliumap as leafmap
|
4 |
from PIL import Image
|
5 |
import rasterio
|
6 |
from rasterio.windows import Window
|
|
|
11 |
import albumentations as albu
|
12 |
import segmentation_models_pytorch as smp
|
13 |
from albumentations.pytorch.transforms import ToTensorV2
|
|
|
14 |
from shapely.geometry import shape
|
15 |
from shapely.ops import unary_union
|
16 |
from rasterio.features import shapes
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
|
20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
ENCODER = 'se_resnext50_32x4d'
|
|
|
25 |
# Load and prepare the model
|
26 |
@st.cache_resource
|
27 |
def load_model():
|
28 |
+
model = torch.load('deeplabv3+ v15.pth', map_location=DEVICE)
|
29 |
model.eval().float()
|
30 |
return model
|
31 |
|
|
|
76 |
return mask_image
|
77 |
|
78 |
|
79 |
+
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
|
80 |
tiles = []
|
81 |
|
82 |
with rasterio.open(map_file) as src:
|
|
|
113 |
"width": tile_size,
|
114 |
"transform": rasterio.windows.transform(window, src.transform)
|
115 |
})
|
|
|
116 |
|
117 |
+
tile_image = np.array(tile_image)
|
118 |
preprocessed_tile = preprocess(image=tile_image)['image']
|
119 |
batch_images.append(preprocessed_tile)
|
120 |
batch_metas.append(out_meta)
|
|
|
124 |
|
125 |
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
|
126 |
with torch.no_grad():
|
127 |
+
batch_masks = model(batch_tensor)
|
128 |
|
129 |
batch_masks = torch.sigmoid(batch_masks)
|
130 |
batch_masks = (batch_masks > threshold).float()
|
|
|
142 |
return tiles
|
143 |
|
144 |
|
|
|
|
|
|
|
|
|
145 |
def create_vector_mask(tiles, output_path):
|
146 |
all_polygons = []
|
147 |
for mask_array, meta in tiles:
|
148 |
+
|
149 |
mask_array = (mask_array > 0).astype(np.uint8)
|
150 |
|
|
|
151 |
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
|
152 |
|
153 |
+
# to shapely polygons
|
154 |
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
|
155 |
|
156 |
all_polygons.extend(polygons)
|
157 |
+
#union of all polygons
|
158 |
union_polygon = unary_union(all_polygons)
|
159 |
+
# create gdf
|
160 |
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
|
161 |
# Save to file
|
162 |
gdf.to_file(output_path)
|
163 |
|
164 |
+
#area in square meters
|
165 |
area_m2 = gdf.to_crs(epsg=3857).area.sum()
|
|
|
166 |
|
167 |
return gdf, area_m2
|
168 |
|
169 |
|
170 |
+
def display_map(shapefile_path, tif_path):
|
171 |
+
st.title("Map with Shape and TIFF Overlay")
|
172 |
+
|
173 |
+
mask = gpd.read_file(shapefile_path)
|
174 |
+
|
175 |
+
if mask.crs is None or mask.crs.to_string() != 'EPSG:3857':
|
176 |
+
mask = mask.to_crs('EPSG:3857')
|
177 |
+
|
178 |
+
bounds = mask.total_bounds # [minx, miny, maxx, maxy]
|
179 |
+
center = [(bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2]
|
180 |
+
|
181 |
+
m = leafmap.Map(
|
182 |
+
center=[center[1], center[0]], # leafmap uses [latitude, longitude]
|
183 |
+
zoom=10,
|
184 |
+
crs='EPSG3857'
|
185 |
+
)
|
186 |
+
|
187 |
+
m.add_gdf(mask, layer_name="Shapefile Mask")
|
188 |
+
|
189 |
+
m.add_raster(tif_path, layer_name="Satellite Image", rgb=True, opacity=0.9)
|
190 |
+
|
191 |
+
m.to_streamlit()
|
192 |
+
|
193 |
+
|
194 |
def main():
|
195 |
+
st.title("PV Segmentor")
|
196 |
|
197 |
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
|
198 |
|
199 |
if uploaded_file is not None:
|
200 |
st.write("File uploaded successfully!")
|
201 |
|
202 |
+
threshold = st.slider(
|
203 |
+
'Select the value of the threshold',
|
204 |
+
min_value=0.1,
|
205 |
+
max_value=0.9,
|
206 |
+
value=0.6,
|
207 |
+
step=0.05
|
208 |
)
|
209 |
+
overlap = st.slider(
|
210 |
+
'Select the value of overlap',
|
211 |
+
min_value=50,
|
212 |
+
max_value=150,
|
213 |
+
value=100,
|
214 |
+
step=25
|
215 |
)
|
216 |
st.write('Selected threshold value:', threshold)
|
217 |
st.write('Selected overlap value:', overlap)
|
|
|
223 |
f.write(uploaded_file.getbuffer())
|
224 |
|
225 |
best_model.float()
|
226 |
+
tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=overlap, batch_size=4, threshold=threshold)
|
227 |
|
228 |
st.write("Processing complete!")
|
229 |
|
|
|
231 |
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
|
232 |
|
233 |
st.write("Vector mask created successfully!")
|
234 |
+
st.write(f"Total area occupied by PV panels: {area_m2:.4f} m^2")
|
235 |
|
236 |
# Offer the shapefile for download
|
237 |
shp_files = [f for f in os.listdir() if
|
|
|
250 |
mime="application/zip"
|
251 |
)
|
252 |
|
253 |
+
display_map("output_mask.shp", "temp.tif")
|
254 |
+
|
255 |
+
#os.remove("temp.tif")
|
256 |
+
#for file in shp_files:
|
257 |
+
# os.remove(file)
|
258 |
|
259 |
|
260 |
if __name__ == "__main__":
|
261 |
+
main()
|