Create chatbot
Browse files
chatbot
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Carregar o tokenizer e o modelo
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
7 |
+
|
8 |
+
# Função para gerar resposta
|
9 |
+
def generate_response(prompt):
|
10 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
11 |
+
outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1)
|
12 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
13 |
+
return response
|
14 |
+
|
15 |
+
# Interface do Gradio
|
16 |
+
interface = gr.Interface(
|
17 |
+
fn=generate_response,
|
18 |
+
inputs=gr.Textbox(label="Pergunta"),
|
19 |
+
outputs=gr.Textbox(label="Resposta"),
|
20 |
+
title="Chatbot GPT-J",
|
21 |
+
description="Um chatbot simples usando GPT-J."
|
22 |
+
)
|
23 |
+
|
24 |
+
# Rodar a interface
|
25 |
+
interface.launch()
|