Spaces:
Sleeping
Sleeping
File size: 1,758 Bytes
5a486d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
#pragma once
/*
* General settings and functions
*/
const int WARP_SIZE = 32;
const int MAX_BLOCK_SIZE = 1024;
static int getNumThreads(int nElem) {
int threadSizes[6] = {32, 64, 128, 256, 512, MAX_BLOCK_SIZE};
for (int i = 0; i < 6; ++i) {
if (nElem <= threadSizes[i]) {
return threadSizes[i];
}
}
return MAX_BLOCK_SIZE;
}
/*
* Reduction utilities
*/
template <typename T>
__device__ __forceinline__ T WARP_SHFL_XOR(T value, int laneMask, int width = warpSize,
unsigned int mask = 0xffffffff) {
#if CUDART_VERSION >= 9000
return __shfl_xor_sync(mask, value, laneMask, width);
#else
return __shfl_xor(value, laneMask, width);
#endif
}
__device__ __forceinline__ int getMSB(int val) { return 31 - __clz(val); }
template<typename T>
struct Pair {
T v1, v2;
__device__ Pair() {}
__device__ Pair(T _v1, T _v2) : v1(_v1), v2(_v2) {}
__device__ Pair(T v) : v1(v), v2(v) {}
__device__ Pair(int v) : v1(v), v2(v) {}
__device__ Pair &operator+=(const Pair<T> &a) {
v1 += a.v1;
v2 += a.v2;
return *this;
}
};
template<typename T>
static __device__ __forceinline__ T warpSum(T val) {
#if __CUDA_ARCH__ >= 300
for (int i = 0; i < getMSB(WARP_SIZE); ++i) {
val += WARP_SHFL_XOR(val, 1 << i, WARP_SIZE);
}
#else
__shared__ T values[MAX_BLOCK_SIZE];
values[threadIdx.x] = val;
__threadfence_block();
const int base = (threadIdx.x / WARP_SIZE) * WARP_SIZE;
for (int i = 1; i < WARP_SIZE; i++) {
val += values[base + ((i + threadIdx.x) % WARP_SIZE)];
}
#endif
return val;
}
template<typename T>
static __device__ __forceinline__ Pair<T> warpSum(Pair<T> value) {
value.v1 = warpSum(value.v1);
value.v2 = warpSum(value.v2);
return value;
} |