Spaces:
Sleeping
Sleeping
OOTDiffusion
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/tools
/deploy
/caffe2_converter.py
#!/usr/bin/env python | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import argparse | |
import os | |
import onnx | |
import torch | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import build_detection_test_loader | |
from detectron2.evaluation import COCOEvaluator, inference_on_dataset, print_csv_format | |
from detectron2.export import Caffe2Tracer, add_export_config | |
from detectron2.modeling import build_model | |
from detectron2.utils.logger import setup_logger | |
def setup_cfg(args): | |
cfg = get_cfg() | |
# cuda context is initialized before creating dataloader, so we don't fork anymore | |
cfg.DATALOADER.NUM_WORKERS = 0 | |
cfg = add_export_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
if cfg.MODEL.DEVICE != "cpu": | |
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split(".")[:2]) | |
assert TORCH_VERSION >= (1, 5), "PyTorch>=1.5 required for GPU conversion!" | |
return cfg | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Convert a model using caffe2 tracing.") | |
parser.add_argument( | |
"--format", | |
choices=["caffe2", "onnx", "torchscript"], | |
help="output format", | |
default="caffe2", | |
) | |
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") | |
parser.add_argument("--run-eval", action="store_true") | |
parser.add_argument("--output", help="output directory for the converted model") | |
parser.add_argument( | |
"opts", | |
help="Modify config options using the command-line", | |
default=None, | |
nargs=argparse.REMAINDER, | |
) | |
args = parser.parse_args() | |
logger = setup_logger() | |
logger.info("Command line arguments: " + str(args)) | |
os.makedirs(args.output, exist_ok=True) | |
cfg = setup_cfg(args) | |
# create a torch model | |
torch_model = build_model(cfg) | |
DetectionCheckpointer(torch_model).resume_or_load(cfg.MODEL.WEIGHTS) | |
# get a sample data | |
data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0]) | |
first_batch = next(iter(data_loader)) | |
# convert and save caffe2 model | |
tracer = Caffe2Tracer(cfg, torch_model, first_batch) | |
if args.format == "caffe2": | |
caffe2_model = tracer.export_caffe2() | |
caffe2_model.save_protobuf(args.output) | |
# draw the caffe2 graph | |
caffe2_model.save_graph(os.path.join(args.output, "model.svg"), inputs=first_batch) | |
elif args.format == "onnx": | |
onnx_model = tracer.export_onnx() | |
onnx.save(onnx_model, os.path.join(args.output, "model.onnx")) | |
elif args.format == "torchscript": | |
script_model = tracer.export_torchscript() | |
script_model.save(os.path.join(args.output, "model.ts")) | |
# Recursively print IR of all modules | |
with open(os.path.join(args.output, "model_ts_IR.txt"), "w") as f: | |
try: | |
f.write(script_model._actual_script_module._c.dump_to_str(True, False, False)) | |
except AttributeError: | |
pass | |
# Print IR of the entire graph (all submodules inlined) | |
with open(os.path.join(args.output, "model_ts_IR_inlined.txt"), "w") as f: | |
f.write(str(script_model.inlined_graph)) | |
# Print the model structure in pytorch style | |
with open(os.path.join(args.output, "model.txt"), "w") as f: | |
f.write(str(script_model)) | |
# run evaluation with the converted model | |
if args.run_eval: | |
assert args.format == "caffe2", "Python inference in other format is not yet supported." | |
dataset = cfg.DATASETS.TEST[0] | |
data_loader = build_detection_test_loader(cfg, dataset) | |
# NOTE: hard-coded evaluator. change to the evaluator for your dataset | |
evaluator = COCOEvaluator(dataset, cfg, True, args.output) | |
metrics = inference_on_dataset(caffe2_model, data_loader, evaluator) | |
print_csv_format(metrics) | |