Spaces:
Running
Running
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
""" | |
@Author : Peike Li | |
@Contact : [email protected] | |
@File : mobilenetv2.py | |
@Time : 8/4/19 3:35 PM | |
@Desc : | |
@License : This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import torch.nn as nn | |
import math | |
import functools | |
from modules import InPlaceABN, InPlaceABNSync | |
BatchNorm2d = functools.partial(InPlaceABNSync, activation='none') | |
__all__ = ['mobilenetv2'] | |
def conv_bn(inp, oup, stride): | |
return nn.Sequential( | |
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), | |
BatchNorm2d(oup), | |
nn.ReLU6(inplace=True) | |
) | |
def conv_1x1_bn(inp, oup): | |
return nn.Sequential( | |
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), | |
BatchNorm2d(oup), | |
nn.ReLU6(inplace=True) | |
) | |
class InvertedResidual(nn.Module): | |
def __init__(self, inp, oup, stride, expand_ratio): | |
super(InvertedResidual, self).__init__() | |
self.stride = stride | |
assert stride in [1, 2] | |
hidden_dim = round(inp * expand_ratio) | |
self.use_res_connect = self.stride == 1 and inp == oup | |
if expand_ratio == 1: | |
self.conv = nn.Sequential( | |
# dw | |
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), | |
BatchNorm2d(hidden_dim), | |
nn.ReLU6(inplace=True), | |
# pw-linear | |
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
BatchNorm2d(oup), | |
) | |
else: | |
self.conv = nn.Sequential( | |
# pw | |
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), | |
BatchNorm2d(hidden_dim), | |
nn.ReLU6(inplace=True), | |
# dw | |
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), | |
BatchNorm2d(hidden_dim), | |
nn.ReLU6(inplace=True), | |
# pw-linear | |
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
BatchNorm2d(oup), | |
) | |
def forward(self, x): | |
if self.use_res_connect: | |
return x + self.conv(x) | |
else: | |
return self.conv(x) | |
class MobileNetV2(nn.Module): | |
def __init__(self, n_class=1000, input_size=224, width_mult=1.): | |
super(MobileNetV2, self).__init__() | |
block = InvertedResidual | |
input_channel = 32 | |
last_channel = 1280 | |
interverted_residual_setting = [ | |
# t, c, n, s | |
[1, 16, 1, 1], | |
[6, 24, 2, 2], # layer 2 | |
[6, 32, 3, 2], # layer 3 | |
[6, 64, 4, 2], | |
[6, 96, 3, 1], # layer 4 | |
[6, 160, 3, 2], | |
[6, 320, 1, 1], # layer 5 | |
] | |
# building first layer | |
assert input_size % 32 == 0 | |
input_channel = int(input_channel * width_mult) | |
self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel | |
self.features = [conv_bn(3, input_channel, 2)] | |
# building inverted residual blocks | |
for t, c, n, s in interverted_residual_setting: | |
output_channel = int(c * width_mult) | |
for i in range(n): | |
if i == 0: | |
self.features.append(block(input_channel, output_channel, s, expand_ratio=t)) | |
else: | |
self.features.append(block(input_channel, output_channel, 1, expand_ratio=t)) | |
input_channel = output_channel | |
# building last several layers | |
self.features.append(conv_1x1_bn(input_channel, self.last_channel)) | |
# make it nn.Sequential | |
self.features = nn.Sequential(*self.features) | |
# building classifier | |
self.classifier = nn.Sequential( | |
nn.Dropout(0.2), | |
nn.Linear(self.last_channel, n_class), | |
) | |
self._initialize_weights() | |
def forward(self, x): | |
x = self.features(x) | |
x = x.mean(3).mean(2) | |
x = self.classifier(x) | |
return x | |
def _initialize_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear): | |
n = m.weight.size(1) | |
m.weight.data.normal_(0, 0.01) | |
m.bias.data.zero_() | |
def mobilenetv2(pretrained=False, **kwargs): | |
"""Constructs a MobileNet_V2 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = MobileNetV2(n_class=1000, **kwargs) | |
if pretrained: | |
model.load_state_dict(load_url(model_urls['mobilenetv2']), strict=False) | |
return model | |