Spaces:
Sleeping
Sleeping
std::vector<at::Tensor> mean_var_cpu(at::Tensor x); | |
std::vector<at::Tensor> mean_var_cuda(at::Tensor x); | |
std::vector<at::Tensor> mean_var_cuda_h(at::Tensor x); | |
at::Tensor forward_cpu(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps); | |
at::Tensor forward_cuda(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps); | |
at::Tensor forward_cuda_h(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps); | |
std::vector<at::Tensor> edz_eydz_cpu(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps); | |
std::vector<at::Tensor> edz_eydz_cuda(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps); | |
std::vector<at::Tensor> edz_eydz_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, | |
bool affine, float eps); | |
at::Tensor backward_cpu(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
at::Tensor edz, at::Tensor eydz, bool affine, float eps); | |
at::Tensor backward_cuda(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
at::Tensor edz, at::Tensor eydz, bool affine, float eps); | |
at::Tensor backward_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, | |
at::Tensor edz, at::Tensor eydz, bool affine, float eps); | |
void leaky_relu_backward_cpu(at::Tensor z, at::Tensor dz, float slope); | |
void leaky_relu_backward_cuda(at::Tensor z, at::Tensor dz, float slope); | |
void leaky_relu_backward_cuda_h(at::Tensor z, at::Tensor dz, float slope); | |
void elu_backward_cpu(at::Tensor z, at::Tensor dz); | |
void elu_backward_cuda(at::Tensor z, at::Tensor dz); | |
static void get_dims(at::Tensor x, int64_t& num, int64_t& chn, int64_t& sp) { | |
num = x.size(0); | |
chn = x.size(1); | |
sp = 1; | |
for (int64_t i = 2; i < x.ndimension(); ++i) | |
sp *= x.size(i); | |
} | |
/* | |
* Specialized CUDA reduction functions for BN | |
*/ | |
template <typename T, typename Op> | |
__device__ T reduce(Op op, int plane, int N, int S) { | |
T sum = (T)0; | |
for (int batch = 0; batch < N; ++batch) { | |
for (int x = threadIdx.x; x < S; x += blockDim.x) { | |
sum += op(batch, plane, x); | |
} | |
} | |
// sum over NumThreads within a warp | |
sum = warpSum(sum); | |
// 'transpose', and reduce within warp again | |
__shared__ T shared[32]; | |
__syncthreads(); | |
if (threadIdx.x % WARP_SIZE == 0) { | |
shared[threadIdx.x / WARP_SIZE] = sum; | |
} | |
if (threadIdx.x >= blockDim.x / WARP_SIZE && threadIdx.x < WARP_SIZE) { | |
// zero out the other entries in shared | |
shared[threadIdx.x] = (T)0; | |
} | |
__syncthreads(); | |
if (threadIdx.x / WARP_SIZE == 0) { | |
sum = warpSum(shared[threadIdx.x]); | |
if (threadIdx.x == 0) { | |
shared[0] = sum; | |
} | |
} | |
__syncthreads(); | |
// Everyone picks it up, should be broadcast into the whole gradInput | |
return shared[0]; | |
} | |