Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
""" | |
@Author : Peike Li | |
@Contact : [email protected] | |
@File : aspp.py | |
@Time : 8/4/19 3:36 PM | |
@Desc : | |
@License : This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from modules import InPlaceABNSync | |
class ASPPModule(nn.Module): | |
""" | |
Reference: | |
Chen, Liang-Chieh, et al. *"Rethinking Atrous Convolution for Semantic Image Segmentation."* | |
""" | |
def __init__(self, features, out_features=512, inner_features=256, dilations=(12, 24, 36)): | |
super(ASPPModule, self).__init__() | |
self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), | |
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, | |
bias=False), | |
InPlaceABNSync(inner_features)) | |
self.conv2 = nn.Sequential( | |
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), | |
InPlaceABNSync(inner_features)) | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), | |
InPlaceABNSync(inner_features)) | |
self.conv4 = nn.Sequential( | |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), | |
InPlaceABNSync(inner_features)) | |
self.conv5 = nn.Sequential( | |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), | |
InPlaceABNSync(inner_features)) | |
self.bottleneck = nn.Sequential( | |
nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), | |
InPlaceABNSync(out_features), | |
nn.Dropout2d(0.1) | |
) | |
def forward(self, x): | |
_, _, h, w = x.size() | |
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) | |
feat2 = self.conv2(x) | |
feat3 = self.conv3(x) | |
feat4 = self.conv4(x) | |
feat5 = self.conv5(x) | |
out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1) | |
bottle = self.bottleneck(out) | |
return bottle |