Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
from PIL import Image, ImageOps
|
7 |
+
|
8 |
+
from utils_ootd import get_mask_location
|
9 |
+
|
10 |
+
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
|
11 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
12 |
+
|
13 |
+
from preprocess.openpose.run_openpose import OpenPose
|
14 |
+
from preprocess.humanparsing.run_parsing import Parsing
|
15 |
+
from ootd.inference_ootd_hd import OOTDiffusionHD
|
16 |
+
from ootd.inference_ootd_dc import OOTDiffusionDC
|
17 |
+
|
18 |
+
import spaces
|
19 |
+
|
20 |
+
|
21 |
+
openpose_model_hd = OpenPose(0)
|
22 |
+
parsing_model_hd = Parsing(0)
|
23 |
+
ootd_model_hd = OOTDiffusionHD(0)
|
24 |
+
|
25 |
+
openpose_model_dc = OpenPose(1)
|
26 |
+
parsing_model_dc = Parsing(1)
|
27 |
+
ootd_model_dc = OOTDiffusionDC(1)
|
28 |
+
|
29 |
+
|
30 |
+
category_dict = ['upperbody', 'lowerbody', 'dress']
|
31 |
+
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
|
32 |
+
|
33 |
+
example_path = os.path.join(os.path.dirname(__file__), 'run/examples')
|
34 |
+
model_hd = os.path.join(example_path, 'model/model_1.png')
|
35 |
+
garment_hd = os.path.join(example_path, 'garment/03244_00.jpg')
|
36 |
+
model_dc = os.path.join(example_path, 'model/model_8.png')
|
37 |
+
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')
|
38 |
+
|
39 |
+
@spaces.GPU
|
40 |
+
def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed):
|
41 |
+
model_type = 'hd'
|
42 |
+
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
|
43 |
+
|
44 |
+
with torch.no_grad():
|
45 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
46 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
47 |
+
keypoints = openpose_model_hd(vton_img.resize((384, 512)))
|
48 |
+
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))
|
49 |
+
|
50 |
+
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
51 |
+
mask = mask.resize((768, 1024), Image.NEAREST)
|
52 |
+
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
|
53 |
+
|
54 |
+
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
|
55 |
+
|
56 |
+
images = ootd_model_hd(
|
57 |
+
model_type=model_type,
|
58 |
+
category=category_dict[category],
|
59 |
+
image_garm=garm_img,
|
60 |
+
image_vton=masked_vton_img,
|
61 |
+
mask=mask,
|
62 |
+
image_ori=vton_img,
|
63 |
+
num_samples=n_samples,
|
64 |
+
num_steps=n_steps,
|
65 |
+
image_scale=image_scale,
|
66 |
+
seed=seed,
|
67 |
+
)
|
68 |
+
|
69 |
+
return images
|
70 |
+
|
71 |
+
def process_dc(vton_img, garm_img, category, n_samples, n_steps, image_scale, seed):
|
72 |
+
model_type = 'dc'
|
73 |
+
if category == 'Upper-body':
|
74 |
+
category = 0
|
75 |
+
elif category == 'Lower-body':
|
76 |
+
category = 1
|
77 |
+
else:
|
78 |
+
category =2
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
82 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
83 |
+
keypoints = openpose_model_dc(vton_img.resize((384, 512)))
|
84 |
+
model_parse, _ = parsing_model_dc(vton_img.resize((384, 512)))
|
85 |
+
|
86 |
+
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
87 |
+
mask = mask.resize((768, 1024), Image.NEAREST)
|
88 |
+
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
|
89 |
+
|
90 |
+
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
|
91 |
+
|
92 |
+
images = ootd_model_dc(
|
93 |
+
model_type=model_type,
|
94 |
+
category=category_dict[category],
|
95 |
+
image_garm=garm_img,
|
96 |
+
image_vton=masked_vton_img,
|
97 |
+
mask=mask,
|
98 |
+
image_ori=vton_img,
|
99 |
+
num_samples=n_samples,
|
100 |
+
num_steps=n_steps,
|
101 |
+
image_scale=image_scale,
|
102 |
+
seed=seed,
|
103 |
+
)
|
104 |
+
|
105 |
+
return images
|
106 |
+
|
107 |
+
|
108 |
+
block = gr.Blocks().queue()
|
109 |
+
with block:
|
110 |
+
with gr.Row():
|
111 |
+
gr.Markdown("# OOTDiffusion Demo")
|
112 |
+
with gr.Row():
|
113 |
+
gr.Markdown("## Half-body")
|
114 |
+
with gr.Row():
|
115 |
+
gr.Markdown("***Support upper-body garments***")
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column():
|
118 |
+
vton_img = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_hd)
|
119 |
+
example = gr.Examples(
|
120 |
+
inputs=vton_img,
|
121 |
+
examples_per_page=14,
|
122 |
+
examples=[
|
123 |
+
os.path.join(example_path, 'model/model_1.png'),
|
124 |
+
os.path.join(example_path, 'model/model_2.png'),
|
125 |
+
os.path.join(example_path, 'model/model_3.png'),
|
126 |
+
os.path.join(example_path, 'model/model_4.png'),
|
127 |
+
os.path.join(example_path, 'model/model_5.png'),
|
128 |
+
os.path.join(example_path, 'model/model_6.png'),
|
129 |
+
os.path.join(example_path, 'model/model_7.png'),
|
130 |
+
os.path.join(example_path, 'model/01008_00.jpg'),
|
131 |
+
os.path.join(example_path, 'model/07966_00.jpg'),
|
132 |
+
os.path.join(example_path, 'model/05997_00.jpg'),
|
133 |
+
os.path.join(example_path, 'model/02849_00.jpg'),
|
134 |
+
os.path.join(example_path, 'model/14627_00.jpg'),
|
135 |
+
os.path.join(example_path, 'model/09597_00.jpg'),
|
136 |
+
os.path.join(example_path, 'model/01861_00.jpg'),
|
137 |
+
])
|
138 |
+
with gr.Column():
|
139 |
+
garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_hd)
|
140 |
+
example = gr.Examples(
|
141 |
+
inputs=garm_img,
|
142 |
+
examples_per_page=14,
|
143 |
+
examples=[
|
144 |
+
os.path.join(example_path, 'garment/03244_00.jpg'),
|
145 |
+
os.path.join(example_path, 'garment/00126_00.jpg'),
|
146 |
+
os.path.join(example_path, 'garment/03032_00.jpg'),
|
147 |
+
os.path.join(example_path, 'garment/06123_00.jpg'),
|
148 |
+
os.path.join(example_path, 'garment/02305_00.jpg'),
|
149 |
+
os.path.join(example_path, 'garment/00055_00.jpg'),
|
150 |
+
os.path.join(example_path, 'garment/00470_00.jpg'),
|
151 |
+
os.path.join(example_path, 'garment/02015_00.jpg'),
|
152 |
+
os.path.join(example_path, 'garment/10297_00.jpg'),
|
153 |
+
os.path.join(example_path, 'garment/07382_00.jpg'),
|
154 |
+
os.path.join(example_path, 'garment/07764_00.jpg'),
|
155 |
+
os.path.join(example_path, 'garment/00151_00.jpg'),
|
156 |
+
os.path.join(example_path, 'garment/12562_00.jpg'),
|
157 |
+
os.path.join(example_path, 'garment/04825_00.jpg'),
|
158 |
+
])
|
159 |
+
with gr.Column():
|
160 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
|
161 |
+
with gr.Column():
|
162 |
+
run_button = gr.Button(value="Run")
|
163 |
+
n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
|
164 |
+
n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
|
165 |
+
# scale = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1)
|
166 |
+
image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
|
167 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
|
168 |
+
|
169 |
+
ips = [vton_img, garm_img, n_samples, n_steps, image_scale, seed]
|
170 |
+
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
|
171 |
+
|
172 |
+
|
173 |
+
with gr.Row():
|
174 |
+
gr.Markdown("## Full-body")
|
175 |
+
with gr.Row():
|
176 |
+
gr.Markdown("***Support upper-body/lower-body/dresses; garment category must be paired!!!***")
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column():
|
179 |
+
vton_img_dc = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_dc)
|
180 |
+
example = gr.Examples(
|
181 |
+
label="Examples (upper-body/lower-body)",
|
182 |
+
inputs=vton_img_dc,
|
183 |
+
examples_per_page=7,
|
184 |
+
examples=[
|
185 |
+
os.path.join(example_path, 'model/model_8.png'),
|
186 |
+
os.path.join(example_path, 'model/049447_0.jpg'),
|
187 |
+
os.path.join(example_path, 'model/049713_0.jpg'),
|
188 |
+
os.path.join(example_path, 'model/051482_0.jpg'),
|
189 |
+
os.path.join(example_path, 'model/051918_0.jpg'),
|
190 |
+
os.path.join(example_path, 'model/051962_0.jpg'),
|
191 |
+
os.path.join(example_path, 'model/049205_0.jpg'),
|
192 |
+
])
|
193 |
+
example = gr.Examples(
|
194 |
+
label="Examples (dress)",
|
195 |
+
inputs=vton_img_dc,
|
196 |
+
examples_per_page=7,
|
197 |
+
examples=[
|
198 |
+
os.path.join(example_path, 'model/model_9.png'),
|
199 |
+
os.path.join(example_path, 'model/052767_0.jpg'),
|
200 |
+
os.path.join(example_path, 'model/052472_0.jpg'),
|
201 |
+
os.path.join(example_path, 'model/053514_0.jpg'),
|
202 |
+
os.path.join(example_path, 'model/053228_0.jpg'),
|
203 |
+
os.path.join(example_path, 'model/052964_0.jpg'),
|
204 |
+
os.path.join(example_path, 'model/053700_0.jpg'),
|
205 |
+
])
|
206 |
+
with gr.Column():
|
207 |
+
garm_img_dc = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_dc)
|
208 |
+
category_dc = gr.Dropdown(label="Garment category (important option!!!)", choices=["Upper-body", "Lower-body", "Dress"], value="Upper-body")
|
209 |
+
example = gr.Examples(
|
210 |
+
label="Examples (upper-body)",
|
211 |
+
inputs=garm_img_dc,
|
212 |
+
examples_per_page=7,
|
213 |
+
examples=[
|
214 |
+
os.path.join(example_path, 'garment/048554_1.jpg'),
|
215 |
+
os.path.join(example_path, 'garment/049920_1.jpg'),
|
216 |
+
os.path.join(example_path, 'garment/049965_1.jpg'),
|
217 |
+
os.path.join(example_path, 'garment/049949_1.jpg'),
|
218 |
+
os.path.join(example_path, 'garment/050181_1.jpg'),
|
219 |
+
os.path.join(example_path, 'garment/049805_1.jpg'),
|
220 |
+
os.path.join(example_path, 'garment/050105_1.jpg'),
|
221 |
+
])
|
222 |
+
example = gr.Examples(
|
223 |
+
label="Examples (lower-body)",
|
224 |
+
inputs=garm_img_dc,
|
225 |
+
examples_per_page=7,
|
226 |
+
examples=[
|
227 |
+
os.path.join(example_path, 'garment/051827_1.jpg'),
|
228 |
+
os.path.join(example_path, 'garment/051946_1.jpg'),
|
229 |
+
os.path.join(example_path, 'garment/051473_1.jpg'),
|
230 |
+
os.path.join(example_path, 'garment/051515_1.jpg'),
|
231 |
+
os.path.join(example_path, 'garment/051517_1.jpg'),
|
232 |
+
os.path.join(example_path, 'garment/051988_1.jpg'),
|
233 |
+
os.path.join(example_path, 'garment/051412_1.jpg'),
|
234 |
+
])
|
235 |
+
example = gr.Examples(
|
236 |
+
label="Examples (dress)",
|
237 |
+
inputs=garm_img_dc,
|
238 |
+
examples_per_page=7,
|
239 |
+
examples=[
|
240 |
+
os.path.join(example_path, 'garment/053290_1.jpg'),
|
241 |
+
os.path.join(example_path, 'garment/053744_1.jpg'),
|
242 |
+
os.path.join(example_path, 'garment/053742_1.jpg'),
|
243 |
+
os.path.join(example_path, 'garment/053786_1.jpg'),
|
244 |
+
os.path.join(example_path, 'garment/053790_1.jpg'),
|
245 |
+
os.path.join(example_path, 'garment/053319_1.jpg'),
|
246 |
+
os.path.join(example_path, 'garment/052234_1.jpg'),
|
247 |
+
])
|
248 |
+
with gr.Column():
|
249 |
+
result_gallery_dc = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
|
250 |
+
with gr.Column():
|
251 |
+
run_button_dc = gr.Button(value="Run")
|
252 |
+
n_samples_dc = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
|
253 |
+
n_steps_dc = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
|
254 |
+
# scale_dc = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1)
|
255 |
+
image_scale_dc = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
|
256 |
+
seed_dc = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
|
257 |
+
|
258 |
+
ips_dc = [vton_img_dc, garm_img_dc, category_dc, n_samples_dc, n_steps_dc, image_scale_dc, seed_dc]
|
259 |
+
run_button_dc.click(fn=process_dc, inputs=ips_dc, outputs=[result_gallery_dc])
|
260 |
+
|
261 |
+
block.launch()
|