Spaces:
Runtime error
Runtime error
File size: 6,901 Bytes
64a3ca1 cf5ad51 64a3ca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
import cv2 as cv
import moviepy.editor as mpe
import numpy as np
import supervision as sv
import torch
from hyper import hp
from moviepy.video.io.ImageSequenceClip import ImageSequenceClip
from PIL import Image
from tqdm import tqdm
def detect(frame, model, processor, confidence_threshold):
"""
args:
image: PIL image
model: PreTrainedModel
processor: PreTrainedProcessor
confidence_threshold: float
returns:
results: dict with keys "boxes", "labels", "scores"
examples:
[
{
"scores": tensor([0.9980, 0.9039, 0.7575, 0.9033]),
"labels": tensor([86, 64, 67, 67]),
"boxes": tensor(
[
[1.1582e03, 1.1893e03, 1.9373e03, 1.9681e03],
[2.4274e02, 1.3234e02, 2.5919e03, 1.9628e03],
[1.1107e-01, 1.5105e03, 3.1980e03, 2.1076e03],
[7.1036e-01, 1.7360e03, 3.1970e03, 2.1100e03],
]
),
}
]
"""
inputs = processor(images=frame, return_tensors="pt").to(hp.device)
with torch.no_grad():
outputs = model(**inputs)
target_sizes = torch.tensor([frame.size[::-1]])
results = processor.post_process_object_detection(
outputs=outputs, threshold=confidence_threshold, target_sizes=target_sizes
)
return results
def get_len_frames(viedo_path):
"""
args:
viedo_path: str
returns:
int: the number of frames in the video
examples:
get_len_frames("../demo_video/aerial.mp4") # 1478
"""
video_info = sv.VideoInfo.from_video_path(viedo_path)
return video_info.total_frames
def track(detected_result, tracker: sv.ByteTrack):
"""
args:
detected_result: dict with keys "boxes", "labels", "scores"
tracker: sv.ByteTrack
returns:
tracked_result: dict with keys "boxes", "labels", "scores"
examples:
from transformers import DetrImageProcessor, DetrForObjectDetection
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
tracker = sv.ByteTrack()
image = Image.open("ZJF990.jpg")
detected_result = detect(image, model, processor, hp.confidence_threshold)
tracked_result = track(detected_result, tracker)
print(detected_result)
print(tracked_result)
[
{
"scores": tensor([0.9980, 0.9039, 0.7575, 0.9033]),
"labels": tensor([86, 64, 67, 67]),
"boxes": tensor(
[
[1.1582e03, 1.1893e03, 1.9373e03, 1.9681e03],
[2.4274e02, 1.3234e02, 2.5919e03, 1.9628e03],
[1.1107e-01, 1.5105e03, 3.1980e03, 2.1076e03],
[7.1036e-01, 1.7360e03, 3.1970e03, 2.1100e03],
]
),
}
]
Detections(
xyxy=array(
[
[1.1581914e03, 1.1892766e03, 1.9372931e03, 1.9680990e03],
[2.4273552e02, 1.3233553e02, 2.5918860e03, 1.9628494e03],
[1.1106834e-01, 1.5105106e03, 3.1980032e03, 2.1075664e03],
[7.1036065e-01, 1.7359819e03, 3.1970449e03, 2.1100107e03],
],
dtype=float32,
),
mask=None,
confidence=array([0.9980374, 0.9038882, 0.7575455, 0.9032779], dtype=float32),
class_id=array([86, 64, 67, 67]),
tracker_id=array([1, 2, 3, 4]),
data={},
)
"""
detections = sv.Detections.from_transformers(detected_result[0])
detections = tracker.update_with_detections(detections)
return detections
def annotate_image(
frame,
detections,
labels,
mask_annotator: sv.MaskAnnotator,
bbox_annotator: sv.BoxAnnotator,
label_annotator: sv.LabelAnnotator,
) -> np.ndarray:
out_frame = mask_annotator.annotate(frame, detections)
out_frame = bbox_annotator.annotate(out_frame, detections)
out_frame = label_annotator.annotate(out_frame, detections, labels=labels)
return out_frame
def detect_and_track(
video_path,
model,
processor,
tracker,
confidence_threshold,
mask_annotator: sv.MaskAnnotator,
bbox_annotator: sv.BoxAnnotator,
label_annotator: sv.LabelAnnotator,
):
video_info = sv.VideoInfo.from_video_path(video_path)
fps = video_info.fps
len_frames = video_info.total_frames
frames_loader = sv.get_video_frames_generator(video_path, end=len_frames)
result_file_name = "output.mp4"
original_file_name = "original.mp4"
combined_file_name = "combined.mp4"
result_file_path = os.path.join("./output/", result_file_name)
original_file_path = os.path.join("./output/", original_file_name)
combined_file_name = os.path.join("./output/", combined_file_name)
concated_frames = []
original_frames = []
for frame in tqdm(frames_loader, total=len_frames):
results = detect(Image.fromarray(frame), model, processor, confidence_threshold)
tracked_results = track(results, tracker)
frame = cv.cvtColor(frame, cv.COLOR_RGB2BGR)
original_frames.append(frame.copy())
scores = tracked_results.confidence.tolist()
labels = tracked_results.class_id.tolist()
frame = annotate_image(
frame,
tracked_results,
labels=[
str(f"{model.config.id2label[label]}:{score:.2f}")
for label, score in zip(labels, scores)
],
mask_annotator=mask_annotator,
bbox_annotator=bbox_annotator,
label_annotator=label_annotator,
)
concated_frames.append(frame) # Add the processed frame to the list
# Create a MoviePy video clip from the list of frames
original_video = mpe.ImageSequenceClip(original_frames, fps=fps)
original_video.write_videofile(original_file_path, codec="libx264", fps=fps)
concated_video = mpe.ImageSequenceClip(concated_frames, fps=fps)
concated_video.write_videofile(result_file_path, codec="libx264", fps=fps)
combined_video = combine_frames(original_frames, concated_frames, fps)
combined_video.write_videofile(combined_file_name, codec="libx264", fps=fps)
return result_file_path, combined_file_name
def combine_frames(frames_list1, frames_list2, fps):
"""
args:
frames_list1: list of PIL images
frames_list2: list of PIL images
returns:
final_clip: moviepy video clip
"""
clip1 = ImageSequenceClip(frames_list1, fps=fps)
clip2 = ImageSequenceClip(frames_list2, fps=fps)
final_clip = mpe.clips_array([[clip1, clip2]])
return final_clip
|