File size: 1,869 Bytes
cc44d2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""Utility functions for pruning."""

from typing import Union

import torch
import torch.nn as nn


def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: str):
    "Prune linear layer in place."
    # NOTE: weight: (out_features, in_features), bias: (out_features,)
    if dim == "input":
        dim = 1
        layer.in_features = len(index)
    elif dim == "output":
        dim = 0
        layer.out_features = len(index)
    else:
        raise ValueError

    layer.weight = nn.Parameter(layer.weight.index_select(dim, index).clone().detach())
    if layer.bias is not None and dim == 0:
        layer.bias = nn.Parameter(layer.bias.index_select(0, index).clone().detach())


def prune_conv1d_layer(layer: nn.Conv1d, index: torch.LongTensor, dim: str):
    """Prune conv1d in place."""
    # NOTE: weight: (out_channels, in_channels, kernel_size), bias: (out_channels,)
    if dim == "input":
        dim = 1
        layer.in_channels = len(index)
    elif dim == "output":
        dim = 0
        layer.out_channels = len(index)
    else:
        raise ValueError
    
    layer.weight = nn.Parameter(layer.weight.index_select(dim, index).clone().detach())
    if layer.bias is not None and dim == 0:
        layer.bias = nn.Parameter(layer.bias.index_select(0, index).clone().detach())


def prune_layer_norm(layernorm: Union[nn.LayerNorm, nn.GroupNorm], index: torch.LongTensor):
    """Prune layer norm or group norm in place."""
    layernorm.weight = nn.Parameter(layernorm.weight.index_select(0, index).clone().detach())
    layernorm.bias = nn.Parameter(layernorm.bias.index_select(0, index).clone().detach())
    if isinstance(layernorm, nn.LayerNorm):
        layernorm.normalized_shape = (len(index),)
    elif isinstance(layernorm, nn.GroupNorm):
        layernorm.num_groups = len(index)
        layernorm.num_channels = len(index)