XiaoHei Studio
Upload 49 files
0047e35
raw
history blame
2.72 kB
import numpy as np
import parselmouth
from modules.F0Predictor.F0Predictor import F0Predictor
class PMF0Predictor(F0Predictor):
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
self.hop_length = hop_length
self.f0_min = f0_min
self.f0_max = f0_max
self.sampling_rate = sampling_rate
self.name = "pm"
def interpolate_f0(self,f0):
'''
对F0进行插值处理
'''
vuv_vector = np.zeros_like(f0, dtype=np.float32)
vuv_vector[f0 > 0.0] = 1.0
vuv_vector[f0 <= 0.0] = 0.0
nzindex = np.nonzero(f0)[0]
data = f0[nzindex]
nzindex = nzindex.astype(np.float32)
time_org = self.hop_length / self.sampling_rate * nzindex
time_frame = np.arange(f0.shape[0]) * self.hop_length / self.sampling_rate
if data.shape[0] <= 0:
return np.zeros(f0.shape[0], dtype=np.float32),vuv_vector
if data.shape[0] == 1:
return np.ones(f0.shape[0], dtype=np.float32) * f0[0],vuv_vector
f0 = np.interp(time_frame, time_org, data, left=data[0], right=data[-1])
return f0,vuv_vector
def compute_f0(self,wav,p_len=None):
x = wav
if p_len is None:
p_len = x.shape[0]//self.hop_length
else:
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
time_step = self.hop_length / self.sampling_rate * 1000
f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
pad_size=(p_len - len(f0) + 1) // 2
if(pad_size>0 or p_len - len(f0) - pad_size>0):
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
f0,uv = self.interpolate_f0(f0)
return f0
def compute_f0_uv(self,wav,p_len=None):
x = wav
if p_len is None:
p_len = x.shape[0]//self.hop_length
else:
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
time_step = self.hop_length / self.sampling_rate * 1000
f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
pad_size=(p_len - len(f0) + 1) // 2
if(pad_size>0 or p_len - len(f0) - pad_size>0):
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
f0,uv = self.interpolate_f0(f0)
return f0,uv