Spaces:
Runtime error
Runtime error
from torch import nn | |
from .constants import * # noqa: F403 | |
from .deepunet import DeepUnet, DeepUnet0 | |
from .seq import BiGRU | |
from .spec import MelSpectrogram | |
class E2E(nn.Module): | |
def __init__(self, hop_length, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1, | |
en_out_channels=16): | |
super(E2E, self).__init__() | |
self.mel = MelSpectrogram(N_MELS, SAMPLE_RATE, WINDOW_LENGTH, hop_length, None, MEL_FMIN, MEL_FMAX) # noqa: F405 | |
self.unet = DeepUnet(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels) | |
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1)) | |
if n_gru: | |
self.fc = nn.Sequential( | |
BiGRU(3 * N_MELS, 256, n_gru), # noqa: F405 | |
nn.Linear(512, N_CLASS), # noqa: F405 | |
nn.Dropout(0.25), | |
nn.Sigmoid() | |
) | |
else: | |
self.fc = nn.Sequential( | |
nn.Linear(3 * N_MELS, N_CLASS), # noqa: F405 | |
nn.Dropout(0.25), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
mel = self.mel(x.reshape(-1, x.shape[-1])).transpose(-1, -2).unsqueeze(1) | |
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2) | |
# x = self.fc(x) | |
hidden_vec = 0 | |
if len(self.fc) == 4: | |
for i in range(len(self.fc)): | |
x = self.fc[i](x) | |
if i == 0: | |
hidden_vec = x | |
return hidden_vec, x | |
class E2E0(nn.Module): | |
def __init__(self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1, | |
en_out_channels=16): | |
super(E2E0, self).__init__() | |
self.unet = DeepUnet0(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels) | |
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1)) | |
if n_gru: | |
self.fc = nn.Sequential( | |
BiGRU(3 * N_MELS, 256, n_gru), # noqa: F405 | |
nn.Linear(512, N_CLASS), # noqa: F405 | |
nn.Dropout(0.25), | |
nn.Sigmoid() | |
) | |
else: | |
self.fc = nn.Sequential( | |
nn.Linear(3 * N_MELS, N_CLASS), # noqa: F405 | |
nn.Dropout(0.25), | |
nn.Sigmoid() | |
) | |
def forward(self, mel): | |
mel = mel.transpose(-1, -2).unsqueeze(1) | |
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2) | |
x = self.fc(x) | |
return x | |