Spaces:
Runtime error
Runtime error
XiaoHei Studio
commited on
Commit
•
abc4e5e
1
Parent(s):
c82bb46
Upload 29 files
Browse files- diffusion/__init__.py +0 -0
- diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- diffusion/__pycache__/data_loaders.cpython-38.pyc +0 -0
- diffusion/__pycache__/diffusion.cpython-38.pyc +0 -0
- diffusion/__pycache__/dpm_solver_pytorch.cpython-38.pyc +0 -0
- diffusion/__pycache__/solver.cpython-38.pyc +0 -0
- diffusion/__pycache__/unit2mel.cpython-38.pyc +0 -0
- diffusion/__pycache__/vocoder.cpython-38.pyc +0 -0
- diffusion/__pycache__/wavenet.cpython-38.pyc +0 -0
- diffusion/data_loaders.py +288 -0
- diffusion/diffusion.py +396 -0
- diffusion/diffusion_onnx.py +614 -0
- diffusion/dpm_solver_pytorch.py +1307 -0
- diffusion/how to export onnx.md +4 -0
- diffusion/infer_gt_mel.py +74 -0
- diffusion/logger/__init__.py +0 -0
- diffusion/logger/__pycache__/__init__.cpython-38.pyc +0 -0
- diffusion/logger/__pycache__/saver.cpython-38.pyc +0 -0
- diffusion/logger/__pycache__/utils.cpython-38.pyc +0 -0
- diffusion/logger/saver.py +145 -0
- diffusion/logger/utils.py +127 -0
- diffusion/onnx_export.py +235 -0
- diffusion/solver.py +200 -0
- diffusion/uni_pc.py +733 -0
- diffusion/unit2mel.py +167 -0
- diffusion/vocoder.py +95 -0
- diffusion/wavenet.py +108 -0
- edgetts/tts.py +47 -0
- edgetts/tts_voices.py +306 -0
diffusion/__init__.py
ADDED
File without changes
|
diffusion/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (159 Bytes). View file
|
|
diffusion/__pycache__/data_loaders.cpython-38.pyc
ADDED
Binary file (5.7 kB). View file
|
|
diffusion/__pycache__/diffusion.cpython-38.pyc
ADDED
Binary file (11.4 kB). View file
|
|
diffusion/__pycache__/dpm_solver_pytorch.cpython-38.pyc
ADDED
Binary file (50.5 kB). View file
|
|
diffusion/__pycache__/solver.cpython-38.pyc
ADDED
Binary file (4.05 kB). View file
|
|
diffusion/__pycache__/unit2mel.cpython-38.pyc
ADDED
Binary file (4.93 kB). View file
|
|
diffusion/__pycache__/vocoder.cpython-38.pyc
ADDED
Binary file (3.53 kB). View file
|
|
diffusion/__pycache__/wavenet.cpython-38.pyc
ADDED
Binary file (3.87 kB). View file
|
|
diffusion/data_loaders.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from utils import repeat_expand_2d
|
11 |
+
|
12 |
+
|
13 |
+
def traverse_dir(
|
14 |
+
root_dir,
|
15 |
+
extensions,
|
16 |
+
amount=None,
|
17 |
+
str_include=None,
|
18 |
+
str_exclude=None,
|
19 |
+
is_pure=False,
|
20 |
+
is_sort=False,
|
21 |
+
is_ext=True):
|
22 |
+
|
23 |
+
file_list = []
|
24 |
+
cnt = 0
|
25 |
+
for root, _, files in os.walk(root_dir):
|
26 |
+
for file in files:
|
27 |
+
if any([file.endswith(f".{ext}") for ext in extensions]):
|
28 |
+
# path
|
29 |
+
mix_path = os.path.join(root, file)
|
30 |
+
pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
|
31 |
+
|
32 |
+
# amount
|
33 |
+
if (amount is not None) and (cnt == amount):
|
34 |
+
if is_sort:
|
35 |
+
file_list.sort()
|
36 |
+
return file_list
|
37 |
+
|
38 |
+
# check string
|
39 |
+
if (str_include is not None) and (str_include not in pure_path):
|
40 |
+
continue
|
41 |
+
if (str_exclude is not None) and (str_exclude in pure_path):
|
42 |
+
continue
|
43 |
+
|
44 |
+
if not is_ext:
|
45 |
+
ext = pure_path.split('.')[-1]
|
46 |
+
pure_path = pure_path[:-(len(ext)+1)]
|
47 |
+
file_list.append(pure_path)
|
48 |
+
cnt += 1
|
49 |
+
if is_sort:
|
50 |
+
file_list.sort()
|
51 |
+
return file_list
|
52 |
+
|
53 |
+
|
54 |
+
def get_data_loaders(args, whole_audio=False):
|
55 |
+
data_train = AudioDataset(
|
56 |
+
filelists = args.data.training_files,
|
57 |
+
waveform_sec=args.data.duration,
|
58 |
+
hop_size=args.data.block_size,
|
59 |
+
sample_rate=args.data.sampling_rate,
|
60 |
+
load_all_data=args.train.cache_all_data,
|
61 |
+
whole_audio=whole_audio,
|
62 |
+
extensions=args.data.extensions,
|
63 |
+
n_spk=args.model.n_spk,
|
64 |
+
spk=args.spk,
|
65 |
+
device=args.train.cache_device,
|
66 |
+
fp16=args.train.cache_fp16,
|
67 |
+
unit_interpolate_mode = args.data.unit_interpolate_mode,
|
68 |
+
use_aug=True)
|
69 |
+
loader_train = torch.utils.data.DataLoader(
|
70 |
+
data_train ,
|
71 |
+
batch_size=args.train.batch_size if not whole_audio else 1,
|
72 |
+
shuffle=True,
|
73 |
+
num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
|
74 |
+
persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
|
75 |
+
pin_memory=True if args.train.cache_device=='cpu' else False
|
76 |
+
)
|
77 |
+
data_valid = AudioDataset(
|
78 |
+
filelists = args.data.validation_files,
|
79 |
+
waveform_sec=args.data.duration,
|
80 |
+
hop_size=args.data.block_size,
|
81 |
+
sample_rate=args.data.sampling_rate,
|
82 |
+
load_all_data=args.train.cache_all_data,
|
83 |
+
whole_audio=True,
|
84 |
+
spk=args.spk,
|
85 |
+
extensions=args.data.extensions,
|
86 |
+
unit_interpolate_mode = args.data.unit_interpolate_mode,
|
87 |
+
n_spk=args.model.n_spk)
|
88 |
+
loader_valid = torch.utils.data.DataLoader(
|
89 |
+
data_valid,
|
90 |
+
batch_size=1,
|
91 |
+
shuffle=False,
|
92 |
+
num_workers=0,
|
93 |
+
pin_memory=True
|
94 |
+
)
|
95 |
+
return loader_train, loader_valid
|
96 |
+
|
97 |
+
|
98 |
+
class AudioDataset(Dataset):
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
filelists,
|
102 |
+
waveform_sec,
|
103 |
+
hop_size,
|
104 |
+
sample_rate,
|
105 |
+
spk,
|
106 |
+
load_all_data=True,
|
107 |
+
whole_audio=False,
|
108 |
+
extensions=['wav'],
|
109 |
+
n_spk=1,
|
110 |
+
device='cpu',
|
111 |
+
fp16=False,
|
112 |
+
use_aug=False,
|
113 |
+
unit_interpolate_mode = 'left'
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
self.waveform_sec = waveform_sec
|
118 |
+
self.sample_rate = sample_rate
|
119 |
+
self.hop_size = hop_size
|
120 |
+
self.filelists = filelists
|
121 |
+
self.whole_audio = whole_audio
|
122 |
+
self.use_aug = use_aug
|
123 |
+
self.data_buffer={}
|
124 |
+
self.pitch_aug_dict = {}
|
125 |
+
self.unit_interpolate_mode = unit_interpolate_mode
|
126 |
+
# np.load(os.path.join(self.path_root, 'pitch_aug_dict.npy'), allow_pickle=True).item()
|
127 |
+
if load_all_data:
|
128 |
+
print('Load all the data filelists:', filelists)
|
129 |
+
else:
|
130 |
+
print('Load the f0, volume data filelists:', filelists)
|
131 |
+
with open(filelists,"r") as f:
|
132 |
+
self.paths = f.read().splitlines()
|
133 |
+
for name_ext in tqdm(self.paths, total=len(self.paths)):
|
134 |
+
path_audio = name_ext
|
135 |
+
duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
|
136 |
+
|
137 |
+
path_f0 = name_ext + ".f0.npy"
|
138 |
+
f0,_ = np.load(path_f0,allow_pickle=True)
|
139 |
+
f0 = torch.from_numpy(np.array(f0,dtype=float)).float().unsqueeze(-1).to(device)
|
140 |
+
|
141 |
+
path_volume = name_ext + ".vol.npy"
|
142 |
+
volume = np.load(path_volume)
|
143 |
+
volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
|
144 |
+
|
145 |
+
path_augvol = name_ext + ".aug_vol.npy"
|
146 |
+
aug_vol = np.load(path_augvol)
|
147 |
+
aug_vol = torch.from_numpy(aug_vol).float().unsqueeze(-1).to(device)
|
148 |
+
|
149 |
+
if n_spk is not None and n_spk > 1:
|
150 |
+
spk_name = name_ext.split("/")[-2]
|
151 |
+
spk_id = spk[spk_name] if spk_name in spk else 0
|
152 |
+
if spk_id < 0 or spk_id >= n_spk:
|
153 |
+
raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 0 to n_spk-1 ')
|
154 |
+
else:
|
155 |
+
spk_id = 0
|
156 |
+
spk_id = torch.LongTensor(np.array([spk_id])).to(device)
|
157 |
+
|
158 |
+
if load_all_data:
|
159 |
+
'''
|
160 |
+
audio, sr = librosa.load(path_audio, sr=self.sample_rate)
|
161 |
+
if len(audio.shape) > 1:
|
162 |
+
audio = librosa.to_mono(audio)
|
163 |
+
audio = torch.from_numpy(audio).to(device)
|
164 |
+
'''
|
165 |
+
path_mel = name_ext + ".mel.npy"
|
166 |
+
mel = np.load(path_mel)
|
167 |
+
mel = torch.from_numpy(mel).to(device)
|
168 |
+
|
169 |
+
path_augmel = name_ext + ".aug_mel.npy"
|
170 |
+
aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
|
171 |
+
aug_mel = np.array(aug_mel,dtype=float)
|
172 |
+
aug_mel = torch.from_numpy(aug_mel).to(device)
|
173 |
+
self.pitch_aug_dict[name_ext] = keyshift
|
174 |
+
|
175 |
+
path_units = name_ext + ".soft.pt"
|
176 |
+
units = torch.load(path_units).to(device)
|
177 |
+
units = units[0]
|
178 |
+
units = repeat_expand_2d(units,f0.size(0),unit_interpolate_mode).transpose(0,1)
|
179 |
+
|
180 |
+
if fp16:
|
181 |
+
mel = mel.half()
|
182 |
+
aug_mel = aug_mel.half()
|
183 |
+
units = units.half()
|
184 |
+
|
185 |
+
self.data_buffer[name_ext] = {
|
186 |
+
'duration': duration,
|
187 |
+
'mel': mel,
|
188 |
+
'aug_mel': aug_mel,
|
189 |
+
'units': units,
|
190 |
+
'f0': f0,
|
191 |
+
'volume': volume,
|
192 |
+
'aug_vol': aug_vol,
|
193 |
+
'spk_id': spk_id
|
194 |
+
}
|
195 |
+
else:
|
196 |
+
path_augmel = name_ext + ".aug_mel.npy"
|
197 |
+
aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
|
198 |
+
self.pitch_aug_dict[name_ext] = keyshift
|
199 |
+
self.data_buffer[name_ext] = {
|
200 |
+
'duration': duration,
|
201 |
+
'f0': f0,
|
202 |
+
'volume': volume,
|
203 |
+
'aug_vol': aug_vol,
|
204 |
+
'spk_id': spk_id
|
205 |
+
}
|
206 |
+
|
207 |
+
|
208 |
+
def __getitem__(self, file_idx):
|
209 |
+
name_ext = self.paths[file_idx]
|
210 |
+
data_buffer = self.data_buffer[name_ext]
|
211 |
+
# check duration. if too short, then skip
|
212 |
+
if data_buffer['duration'] < (self.waveform_sec + 0.1):
|
213 |
+
return self.__getitem__( (file_idx + 1) % len(self.paths))
|
214 |
+
|
215 |
+
# get item
|
216 |
+
return self.get_data(name_ext, data_buffer)
|
217 |
+
|
218 |
+
def get_data(self, name_ext, data_buffer):
|
219 |
+
name = os.path.splitext(name_ext)[0]
|
220 |
+
frame_resolution = self.hop_size / self.sample_rate
|
221 |
+
duration = data_buffer['duration']
|
222 |
+
waveform_sec = duration if self.whole_audio else self.waveform_sec
|
223 |
+
|
224 |
+
# load audio
|
225 |
+
idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
|
226 |
+
start_frame = int(idx_from / frame_resolution)
|
227 |
+
units_frame_len = int(waveform_sec / frame_resolution)
|
228 |
+
aug_flag = random.choice([True, False]) and self.use_aug
|
229 |
+
'''
|
230 |
+
audio = data_buffer.get('audio')
|
231 |
+
if audio is None:
|
232 |
+
path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
|
233 |
+
audio, sr = librosa.load(
|
234 |
+
path_audio,
|
235 |
+
sr = self.sample_rate,
|
236 |
+
offset = start_frame * frame_resolution,
|
237 |
+
duration = waveform_sec)
|
238 |
+
if len(audio.shape) > 1:
|
239 |
+
audio = librosa.to_mono(audio)
|
240 |
+
# clip audio into N seconds
|
241 |
+
audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
|
242 |
+
audio = torch.from_numpy(audio).float()
|
243 |
+
else:
|
244 |
+
audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
|
245 |
+
'''
|
246 |
+
# load mel
|
247 |
+
mel_key = 'aug_mel' if aug_flag else 'mel'
|
248 |
+
mel = data_buffer.get(mel_key)
|
249 |
+
if mel is None:
|
250 |
+
mel = name_ext + ".mel.npy"
|
251 |
+
mel = np.load(mel)
|
252 |
+
mel = mel[start_frame : start_frame + units_frame_len]
|
253 |
+
mel = torch.from_numpy(mel).float()
|
254 |
+
else:
|
255 |
+
mel = mel[start_frame : start_frame + units_frame_len]
|
256 |
+
|
257 |
+
# load f0
|
258 |
+
f0 = data_buffer.get('f0')
|
259 |
+
aug_shift = 0
|
260 |
+
if aug_flag:
|
261 |
+
aug_shift = self.pitch_aug_dict[name_ext]
|
262 |
+
f0_frames = 2 ** (aug_shift / 12) * f0[start_frame : start_frame + units_frame_len]
|
263 |
+
|
264 |
+
# load units
|
265 |
+
units = data_buffer.get('units')
|
266 |
+
if units is None:
|
267 |
+
path_units = name_ext + ".soft.pt"
|
268 |
+
units = torch.load(path_units)
|
269 |
+
units = units[0]
|
270 |
+
units = repeat_expand_2d(units,f0.size(0),self.unit_interpolate_mode).transpose(0,1)
|
271 |
+
|
272 |
+
units = units[start_frame : start_frame + units_frame_len]
|
273 |
+
|
274 |
+
# load volume
|
275 |
+
vol_key = 'aug_vol' if aug_flag else 'volume'
|
276 |
+
volume = data_buffer.get(vol_key)
|
277 |
+
volume_frames = volume[start_frame : start_frame + units_frame_len]
|
278 |
+
|
279 |
+
# load spk_id
|
280 |
+
spk_id = data_buffer.get('spk_id')
|
281 |
+
|
282 |
+
# load shift
|
283 |
+
aug_shift = torch.from_numpy(np.array([[aug_shift]])).float()
|
284 |
+
|
285 |
+
return dict(mel=mel, f0=f0_frames, volume=volume_frames, units=units, spk_id=spk_id, aug_shift=aug_shift, name=name, name_ext=name_ext)
|
286 |
+
|
287 |
+
def __len__(self):
|
288 |
+
return len(self.paths)
|
diffusion/diffusion.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import deque
|
2 |
+
from functools import partial
|
3 |
+
from inspect import isfunction
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
|
12 |
+
def exists(x):
|
13 |
+
return x is not None
|
14 |
+
|
15 |
+
|
16 |
+
def default(val, d):
|
17 |
+
if exists(val):
|
18 |
+
return val
|
19 |
+
return d() if isfunction(d) else d
|
20 |
+
|
21 |
+
|
22 |
+
def extract(a, t, x_shape):
|
23 |
+
b, *_ = t.shape
|
24 |
+
out = a.gather(-1, t)
|
25 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
26 |
+
|
27 |
+
|
28 |
+
def noise_like(shape, device, repeat=False):
|
29 |
+
def repeat_noise():
|
30 |
+
return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
31 |
+
def noise():
|
32 |
+
return torch.randn(shape, device=device)
|
33 |
+
return repeat_noise() if repeat else noise()
|
34 |
+
|
35 |
+
|
36 |
+
def linear_beta_schedule(timesteps, max_beta=0.02):
|
37 |
+
"""
|
38 |
+
linear schedule
|
39 |
+
"""
|
40 |
+
betas = np.linspace(1e-4, max_beta, timesteps)
|
41 |
+
return betas
|
42 |
+
|
43 |
+
|
44 |
+
def cosine_beta_schedule(timesteps, s=0.008):
|
45 |
+
"""
|
46 |
+
cosine schedule
|
47 |
+
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
48 |
+
"""
|
49 |
+
steps = timesteps + 1
|
50 |
+
x = np.linspace(0, steps, steps)
|
51 |
+
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
|
52 |
+
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
53 |
+
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
54 |
+
return np.clip(betas, a_min=0, a_max=0.999)
|
55 |
+
|
56 |
+
|
57 |
+
beta_schedule = {
|
58 |
+
"cosine": cosine_beta_schedule,
|
59 |
+
"linear": linear_beta_schedule,
|
60 |
+
}
|
61 |
+
|
62 |
+
|
63 |
+
class GaussianDiffusion(nn.Module):
|
64 |
+
def __init__(self,
|
65 |
+
denoise_fn,
|
66 |
+
out_dims=128,
|
67 |
+
timesteps=1000,
|
68 |
+
k_step=1000,
|
69 |
+
max_beta=0.02,
|
70 |
+
spec_min=-12,
|
71 |
+
spec_max=2):
|
72 |
+
|
73 |
+
super().__init__()
|
74 |
+
self.denoise_fn = denoise_fn
|
75 |
+
self.out_dims = out_dims
|
76 |
+
betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
|
77 |
+
|
78 |
+
alphas = 1. - betas
|
79 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
80 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
81 |
+
|
82 |
+
timesteps, = betas.shape
|
83 |
+
self.num_timesteps = int(timesteps)
|
84 |
+
self.k_step = k_step if k_step>0 and k_step<timesteps else timesteps
|
85 |
+
|
86 |
+
self.noise_list = deque(maxlen=4)
|
87 |
+
|
88 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
89 |
+
|
90 |
+
self.register_buffer('betas', to_torch(betas))
|
91 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
92 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
93 |
+
|
94 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
95 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
96 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
97 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
98 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
99 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
100 |
+
|
101 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
102 |
+
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
|
103 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
104 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
105 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
106 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
107 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
108 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
109 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
110 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
111 |
+
|
112 |
+
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
|
113 |
+
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
|
114 |
+
|
115 |
+
def q_mean_variance(self, x_start, t):
|
116 |
+
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
117 |
+
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
|
118 |
+
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
119 |
+
return mean, variance, log_variance
|
120 |
+
|
121 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
122 |
+
return (
|
123 |
+
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
124 |
+
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
125 |
+
)
|
126 |
+
|
127 |
+
def q_posterior(self, x_start, x_t, t):
|
128 |
+
posterior_mean = (
|
129 |
+
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
130 |
+
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
131 |
+
)
|
132 |
+
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
|
133 |
+
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
|
134 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
135 |
+
|
136 |
+
def p_mean_variance(self, x, t, cond):
|
137 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
138 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
|
139 |
+
|
140 |
+
x_recon.clamp_(-1., 1.)
|
141 |
+
|
142 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
143 |
+
return model_mean, posterior_variance, posterior_log_variance
|
144 |
+
|
145 |
+
@torch.no_grad()
|
146 |
+
def p_sample_ddim(self, x, t, interval, cond):
|
147 |
+
"""
|
148 |
+
Use the DDIM method from
|
149 |
+
"""
|
150 |
+
a_t = extract(self.alphas_cumprod, t, x.shape)
|
151 |
+
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
|
152 |
+
|
153 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
154 |
+
x_prev = a_prev.sqrt() * (x / a_t.sqrt() + (((1 - a_prev) / a_prev).sqrt()-((1 - a_t) / a_t).sqrt()) * noise_pred)
|
155 |
+
return x_prev
|
156 |
+
|
157 |
+
@torch.no_grad()
|
158 |
+
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
|
159 |
+
b, *_, device = *x.shape, x.device
|
160 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
|
161 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
162 |
+
# no noise when t == 0
|
163 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
164 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
165 |
+
|
166 |
+
@torch.no_grad()
|
167 |
+
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
|
168 |
+
"""
|
169 |
+
Use the PLMS method from
|
170 |
+
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
|
171 |
+
"""
|
172 |
+
|
173 |
+
def get_x_pred(x, noise_t, t):
|
174 |
+
a_t = extract(self.alphas_cumprod, t, x.shape)
|
175 |
+
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
|
176 |
+
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
|
177 |
+
|
178 |
+
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
|
179 |
+
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
180 |
+
x_pred = x + x_delta
|
181 |
+
|
182 |
+
return x_pred
|
183 |
+
|
184 |
+
noise_list = self.noise_list
|
185 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
186 |
+
|
187 |
+
if len(noise_list) == 0:
|
188 |
+
x_pred = get_x_pred(x, noise_pred, t)
|
189 |
+
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
|
190 |
+
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
|
191 |
+
elif len(noise_list) == 1:
|
192 |
+
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
|
193 |
+
elif len(noise_list) == 2:
|
194 |
+
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
|
195 |
+
else:
|
196 |
+
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
|
197 |
+
|
198 |
+
x_prev = get_x_pred(x, noise_pred_prime, t)
|
199 |
+
noise_list.append(noise_pred)
|
200 |
+
|
201 |
+
return x_prev
|
202 |
+
|
203 |
+
def q_sample(self, x_start, t, noise=None):
|
204 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
205 |
+
return (
|
206 |
+
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
207 |
+
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
208 |
+
)
|
209 |
+
|
210 |
+
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
|
211 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
212 |
+
|
213 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
214 |
+
x_recon = self.denoise_fn(x_noisy, t, cond)
|
215 |
+
|
216 |
+
if loss_type == 'l1':
|
217 |
+
loss = (noise - x_recon).abs().mean()
|
218 |
+
elif loss_type == 'l2':
|
219 |
+
loss = F.mse_loss(noise, x_recon)
|
220 |
+
else:
|
221 |
+
raise NotImplementedError()
|
222 |
+
|
223 |
+
return loss
|
224 |
+
|
225 |
+
def forward(self,
|
226 |
+
condition,
|
227 |
+
gt_spec=None,
|
228 |
+
infer=True,
|
229 |
+
infer_speedup=10,
|
230 |
+
method='dpm-solver',
|
231 |
+
k_step=300,
|
232 |
+
use_tqdm=True):
|
233 |
+
"""
|
234 |
+
conditioning diffusion, use fastspeech2 encoder output as the condition
|
235 |
+
"""
|
236 |
+
cond = condition.transpose(1, 2)
|
237 |
+
b, device = condition.shape[0], condition.device
|
238 |
+
|
239 |
+
if not infer:
|
240 |
+
spec = self.norm_spec(gt_spec)
|
241 |
+
t = torch.randint(0, self.k_step, (b,), device=device).long()
|
242 |
+
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
|
243 |
+
return self.p_losses(norm_spec, t, cond=cond)
|
244 |
+
else:
|
245 |
+
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
|
246 |
+
|
247 |
+
if gt_spec is None:
|
248 |
+
t = self.k_step
|
249 |
+
x = torch.randn(shape, device=device)
|
250 |
+
else:
|
251 |
+
t = k_step
|
252 |
+
norm_spec = self.norm_spec(gt_spec)
|
253 |
+
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
|
254 |
+
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
|
255 |
+
|
256 |
+
if method is not None and infer_speedup > 1:
|
257 |
+
if method == 'dpm-solver' or method == 'dpm-solver++':
|
258 |
+
from .dpm_solver_pytorch import (
|
259 |
+
DPM_Solver,
|
260 |
+
NoiseScheduleVP,
|
261 |
+
model_wrapper,
|
262 |
+
)
|
263 |
+
# 1. Define the noise schedule.
|
264 |
+
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
|
265 |
+
|
266 |
+
# 2. Convert your discrete-time `model` to the continuous-time
|
267 |
+
# noise prediction model. Here is an example for a diffusion model
|
268 |
+
# `model` with the noise prediction type ("noise") .
|
269 |
+
def my_wrapper(fn):
|
270 |
+
def wrapped(x, t, **kwargs):
|
271 |
+
ret = fn(x, t, **kwargs)
|
272 |
+
if use_tqdm:
|
273 |
+
self.bar.update(1)
|
274 |
+
return ret
|
275 |
+
|
276 |
+
return wrapped
|
277 |
+
|
278 |
+
model_fn = model_wrapper(
|
279 |
+
my_wrapper(self.denoise_fn),
|
280 |
+
noise_schedule,
|
281 |
+
model_type="noise", # or "x_start" or "v" or "score"
|
282 |
+
model_kwargs={"cond": cond}
|
283 |
+
)
|
284 |
+
|
285 |
+
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
|
286 |
+
# (We recommend singlestep DPM-Solver for unconditional sampling)
|
287 |
+
# You can adjust the `steps` to balance the computation
|
288 |
+
# costs and the sample quality.
|
289 |
+
if method == 'dpm-solver':
|
290 |
+
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
|
291 |
+
elif method == 'dpm-solver++':
|
292 |
+
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
293 |
+
|
294 |
+
steps = t // infer_speedup
|
295 |
+
if use_tqdm:
|
296 |
+
self.bar = tqdm(desc="sample time step", total=steps)
|
297 |
+
x = dpm_solver.sample(
|
298 |
+
x,
|
299 |
+
steps=steps,
|
300 |
+
order=2,
|
301 |
+
skip_type="time_uniform",
|
302 |
+
method="multistep",
|
303 |
+
)
|
304 |
+
if use_tqdm:
|
305 |
+
self.bar.close()
|
306 |
+
elif method == 'pndm':
|
307 |
+
self.noise_list = deque(maxlen=4)
|
308 |
+
if use_tqdm:
|
309 |
+
for i in tqdm(
|
310 |
+
reversed(range(0, t, infer_speedup)), desc='sample time step',
|
311 |
+
total=t // infer_speedup,
|
312 |
+
):
|
313 |
+
x = self.p_sample_plms(
|
314 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
315 |
+
infer_speedup, cond=cond
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
for i in reversed(range(0, t, infer_speedup)):
|
319 |
+
x = self.p_sample_plms(
|
320 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
321 |
+
infer_speedup, cond=cond
|
322 |
+
)
|
323 |
+
elif method == 'ddim':
|
324 |
+
if use_tqdm:
|
325 |
+
for i in tqdm(
|
326 |
+
reversed(range(0, t, infer_speedup)), desc='sample time step',
|
327 |
+
total=t // infer_speedup,
|
328 |
+
):
|
329 |
+
x = self.p_sample_ddim(
|
330 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
331 |
+
infer_speedup, cond=cond
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
for i in reversed(range(0, t, infer_speedup)):
|
335 |
+
x = self.p_sample_ddim(
|
336 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
337 |
+
infer_speedup, cond=cond
|
338 |
+
)
|
339 |
+
elif method == 'unipc':
|
340 |
+
from .uni_pc import NoiseScheduleVP, UniPC, model_wrapper
|
341 |
+
# 1. Define the noise schedule.
|
342 |
+
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
|
343 |
+
|
344 |
+
# 2. Convert your discrete-time `model` to the continuous-time
|
345 |
+
# noise prediction model. Here is an example for a diffusion model
|
346 |
+
# `model` with the noise prediction type ("noise") .
|
347 |
+
def my_wrapper(fn):
|
348 |
+
def wrapped(x, t, **kwargs):
|
349 |
+
ret = fn(x, t, **kwargs)
|
350 |
+
if use_tqdm:
|
351 |
+
self.bar.update(1)
|
352 |
+
return ret
|
353 |
+
|
354 |
+
return wrapped
|
355 |
+
|
356 |
+
model_fn = model_wrapper(
|
357 |
+
my_wrapper(self.denoise_fn),
|
358 |
+
noise_schedule,
|
359 |
+
model_type="noise", # or "x_start" or "v" or "score"
|
360 |
+
model_kwargs={"cond": cond}
|
361 |
+
)
|
362 |
+
|
363 |
+
# 3. Define uni_pc and sample by multistep UniPC.
|
364 |
+
# You can adjust the `steps` to balance the computation
|
365 |
+
# costs and the sample quality.
|
366 |
+
uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')
|
367 |
+
|
368 |
+
steps = t // infer_speedup
|
369 |
+
if use_tqdm:
|
370 |
+
self.bar = tqdm(desc="sample time step", total=steps)
|
371 |
+
x = uni_pc.sample(
|
372 |
+
x,
|
373 |
+
steps=steps,
|
374 |
+
order=2,
|
375 |
+
skip_type="time_uniform",
|
376 |
+
method="multistep",
|
377 |
+
)
|
378 |
+
if use_tqdm:
|
379 |
+
self.bar.close()
|
380 |
+
else:
|
381 |
+
raise NotImplementedError(method)
|
382 |
+
else:
|
383 |
+
if use_tqdm:
|
384 |
+
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
|
385 |
+
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
386 |
+
else:
|
387 |
+
for i in reversed(range(0, t)):
|
388 |
+
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
389 |
+
x = x.squeeze(1).transpose(1, 2) # [B, T, M]
|
390 |
+
return self.denorm_spec(x)
|
391 |
+
|
392 |
+
def norm_spec(self, x):
|
393 |
+
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
|
394 |
+
|
395 |
+
def denorm_spec(self, x):
|
396 |
+
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|
diffusion/diffusion_onnx.py
ADDED
@@ -0,0 +1,614 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from collections import deque
|
3 |
+
from functools import partial
|
4 |
+
from inspect import isfunction
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import Conv1d, Mish
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
def exists(x):
|
15 |
+
return x is not None
|
16 |
+
|
17 |
+
|
18 |
+
def default(val, d):
|
19 |
+
if exists(val):
|
20 |
+
return val
|
21 |
+
return d() if isfunction(d) else d
|
22 |
+
|
23 |
+
|
24 |
+
def extract(a, t):
|
25 |
+
return a[t].reshape((1, 1, 1, 1))
|
26 |
+
|
27 |
+
|
28 |
+
def noise_like(shape, device, repeat=False):
|
29 |
+
def repeat_noise():
|
30 |
+
return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
31 |
+
def noise():
|
32 |
+
return torch.randn(shape, device=device)
|
33 |
+
return repeat_noise() if repeat else noise()
|
34 |
+
|
35 |
+
|
36 |
+
def linear_beta_schedule(timesteps, max_beta=0.02):
|
37 |
+
"""
|
38 |
+
linear schedule
|
39 |
+
"""
|
40 |
+
betas = np.linspace(1e-4, max_beta, timesteps)
|
41 |
+
return betas
|
42 |
+
|
43 |
+
|
44 |
+
def cosine_beta_schedule(timesteps, s=0.008):
|
45 |
+
"""
|
46 |
+
cosine schedule
|
47 |
+
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
48 |
+
"""
|
49 |
+
steps = timesteps + 1
|
50 |
+
x = np.linspace(0, steps, steps)
|
51 |
+
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
|
52 |
+
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
53 |
+
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
54 |
+
return np.clip(betas, a_min=0, a_max=0.999)
|
55 |
+
|
56 |
+
|
57 |
+
beta_schedule = {
|
58 |
+
"cosine": cosine_beta_schedule,
|
59 |
+
"linear": linear_beta_schedule,
|
60 |
+
}
|
61 |
+
|
62 |
+
|
63 |
+
def extract_1(a, t):
|
64 |
+
return a[t].reshape((1, 1, 1, 1))
|
65 |
+
|
66 |
+
|
67 |
+
def predict_stage0(noise_pred, noise_pred_prev):
|
68 |
+
return (noise_pred + noise_pred_prev) / 2
|
69 |
+
|
70 |
+
|
71 |
+
def predict_stage1(noise_pred, noise_list):
|
72 |
+
return (noise_pred * 3
|
73 |
+
- noise_list[-1]) / 2
|
74 |
+
|
75 |
+
|
76 |
+
def predict_stage2(noise_pred, noise_list):
|
77 |
+
return (noise_pred * 23
|
78 |
+
- noise_list[-1] * 16
|
79 |
+
+ noise_list[-2] * 5) / 12
|
80 |
+
|
81 |
+
|
82 |
+
def predict_stage3(noise_pred, noise_list):
|
83 |
+
return (noise_pred * 55
|
84 |
+
- noise_list[-1] * 59
|
85 |
+
+ noise_list[-2] * 37
|
86 |
+
- noise_list[-3] * 9) / 24
|
87 |
+
|
88 |
+
|
89 |
+
class SinusoidalPosEmb(nn.Module):
|
90 |
+
def __init__(self, dim):
|
91 |
+
super().__init__()
|
92 |
+
self.dim = dim
|
93 |
+
self.half_dim = dim // 2
|
94 |
+
self.emb = 9.21034037 / (self.half_dim - 1)
|
95 |
+
self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
|
96 |
+
self.emb = self.emb.cpu()
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
emb = self.emb * x
|
100 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
101 |
+
return emb
|
102 |
+
|
103 |
+
|
104 |
+
class ResidualBlock(nn.Module):
|
105 |
+
def __init__(self, encoder_hidden, residual_channels, dilation):
|
106 |
+
super().__init__()
|
107 |
+
self.residual_channels = residual_channels
|
108 |
+
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
|
109 |
+
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
|
110 |
+
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
|
111 |
+
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
|
112 |
+
|
113 |
+
def forward(self, x, conditioner, diffusion_step):
|
114 |
+
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
115 |
+
conditioner = self.conditioner_projection(conditioner)
|
116 |
+
y = x + diffusion_step
|
117 |
+
y = self.dilated_conv(y) + conditioner
|
118 |
+
|
119 |
+
gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
120 |
+
|
121 |
+
y = torch.sigmoid(gate) * torch.tanh(filter_1)
|
122 |
+
y = self.output_projection(y)
|
123 |
+
|
124 |
+
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
125 |
+
|
126 |
+
return (x + residual) / 1.41421356, skip
|
127 |
+
|
128 |
+
|
129 |
+
class DiffNet(nn.Module):
|
130 |
+
def __init__(self, in_dims, n_layers, n_chans, n_hidden):
|
131 |
+
super().__init__()
|
132 |
+
self.encoder_hidden = n_hidden
|
133 |
+
self.residual_layers = n_layers
|
134 |
+
self.residual_channels = n_chans
|
135 |
+
self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
|
136 |
+
self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
|
137 |
+
dim = self.residual_channels
|
138 |
+
self.mlp = nn.Sequential(
|
139 |
+
nn.Linear(dim, dim * 4),
|
140 |
+
Mish(),
|
141 |
+
nn.Linear(dim * 4, dim)
|
142 |
+
)
|
143 |
+
self.residual_layers = nn.ModuleList([
|
144 |
+
ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
|
145 |
+
for i in range(self.residual_layers)
|
146 |
+
])
|
147 |
+
self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
|
148 |
+
self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
|
149 |
+
nn.init.zeros_(self.output_projection.weight)
|
150 |
+
|
151 |
+
def forward(self, spec, diffusion_step, cond):
|
152 |
+
x = spec.squeeze(0)
|
153 |
+
x = self.input_projection(x) # x [B, residual_channel, T]
|
154 |
+
x = F.relu(x)
|
155 |
+
# skip = torch.randn_like(x)
|
156 |
+
diffusion_step = diffusion_step.float()
|
157 |
+
diffusion_step = self.diffusion_embedding(diffusion_step)
|
158 |
+
diffusion_step = self.mlp(diffusion_step)
|
159 |
+
|
160 |
+
x, skip = self.residual_layers[0](x, cond, diffusion_step)
|
161 |
+
# noinspection PyTypeChecker
|
162 |
+
for layer in self.residual_layers[1:]:
|
163 |
+
x, skip_connection = layer.forward(x, cond, diffusion_step)
|
164 |
+
skip = skip + skip_connection
|
165 |
+
x = skip / math.sqrt(len(self.residual_layers))
|
166 |
+
x = self.skip_projection(x)
|
167 |
+
x = F.relu(x)
|
168 |
+
x = self.output_projection(x) # [B, 80, T]
|
169 |
+
return x.unsqueeze(1)
|
170 |
+
|
171 |
+
|
172 |
+
class AfterDiffusion(nn.Module):
|
173 |
+
def __init__(self, spec_max, spec_min, v_type='a'):
|
174 |
+
super().__init__()
|
175 |
+
self.spec_max = spec_max
|
176 |
+
self.spec_min = spec_min
|
177 |
+
self.type = v_type
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
x = x.squeeze(1).permute(0, 2, 1)
|
181 |
+
mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|
182 |
+
if self.type == 'nsf-hifigan-log10':
|
183 |
+
mel_out = mel_out * 0.434294
|
184 |
+
return mel_out.transpose(2, 1)
|
185 |
+
|
186 |
+
|
187 |
+
class Pred(nn.Module):
|
188 |
+
def __init__(self, alphas_cumprod):
|
189 |
+
super().__init__()
|
190 |
+
self.alphas_cumprod = alphas_cumprod
|
191 |
+
|
192 |
+
def forward(self, x_1, noise_t, t_1, t_prev):
|
193 |
+
a_t = extract(self.alphas_cumprod, t_1).cpu()
|
194 |
+
a_prev = extract(self.alphas_cumprod, t_prev).cpu()
|
195 |
+
a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
|
196 |
+
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
|
197 |
+
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
198 |
+
x_pred = x_1 + x_delta.cpu()
|
199 |
+
|
200 |
+
return x_pred
|
201 |
+
|
202 |
+
|
203 |
+
class GaussianDiffusion(nn.Module):
|
204 |
+
def __init__(self,
|
205 |
+
out_dims=128,
|
206 |
+
n_layers=20,
|
207 |
+
n_chans=384,
|
208 |
+
n_hidden=256,
|
209 |
+
timesteps=1000,
|
210 |
+
k_step=1000,
|
211 |
+
max_beta=0.02,
|
212 |
+
spec_min=-12,
|
213 |
+
spec_max=2):
|
214 |
+
super().__init__()
|
215 |
+
self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
|
216 |
+
self.out_dims = out_dims
|
217 |
+
self.mel_bins = out_dims
|
218 |
+
self.n_hidden = n_hidden
|
219 |
+
betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
|
220 |
+
|
221 |
+
alphas = 1. - betas
|
222 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
223 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
224 |
+
timesteps, = betas.shape
|
225 |
+
self.num_timesteps = int(timesteps)
|
226 |
+
self.k_step = k_step
|
227 |
+
|
228 |
+
self.noise_list = deque(maxlen=4)
|
229 |
+
|
230 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
231 |
+
|
232 |
+
self.register_buffer('betas', to_torch(betas))
|
233 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
234 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
235 |
+
|
236 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
237 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
238 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
239 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
240 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
241 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
242 |
+
|
243 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
244 |
+
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
|
245 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
246 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
247 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
248 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
249 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
250 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
251 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
252 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
253 |
+
|
254 |
+
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
|
255 |
+
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
|
256 |
+
self.ad = AfterDiffusion(self.spec_max, self.spec_min)
|
257 |
+
self.xp = Pred(self.alphas_cumprod)
|
258 |
+
|
259 |
+
def q_mean_variance(self, x_start, t):
|
260 |
+
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
261 |
+
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
|
262 |
+
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
263 |
+
return mean, variance, log_variance
|
264 |
+
|
265 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
266 |
+
return (
|
267 |
+
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
268 |
+
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
269 |
+
)
|
270 |
+
|
271 |
+
def q_posterior(self, x_start, x_t, t):
|
272 |
+
posterior_mean = (
|
273 |
+
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
274 |
+
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
275 |
+
)
|
276 |
+
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
|
277 |
+
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
|
278 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
279 |
+
|
280 |
+
def p_mean_variance(self, x, t, cond):
|
281 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
282 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
|
283 |
+
|
284 |
+
x_recon.clamp_(-1., 1.)
|
285 |
+
|
286 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
287 |
+
return model_mean, posterior_variance, posterior_log_variance
|
288 |
+
|
289 |
+
@torch.no_grad()
|
290 |
+
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
|
291 |
+
b, *_, device = *x.shape, x.device
|
292 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
|
293 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
294 |
+
# no noise when t == 0
|
295 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
296 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
297 |
+
|
298 |
+
@torch.no_grad()
|
299 |
+
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
|
300 |
+
"""
|
301 |
+
Use the PLMS method from
|
302 |
+
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
|
303 |
+
"""
|
304 |
+
|
305 |
+
def get_x_pred(x, noise_t, t):
|
306 |
+
a_t = extract(self.alphas_cumprod, t)
|
307 |
+
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
|
308 |
+
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
|
309 |
+
|
310 |
+
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
|
311 |
+
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
312 |
+
x_pred = x + x_delta
|
313 |
+
|
314 |
+
return x_pred
|
315 |
+
|
316 |
+
noise_list = self.noise_list
|
317 |
+
noise_pred = self.denoise_fn(x, t, cond=cond)
|
318 |
+
|
319 |
+
if len(noise_list) == 0:
|
320 |
+
x_pred = get_x_pred(x, noise_pred, t)
|
321 |
+
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
|
322 |
+
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
|
323 |
+
elif len(noise_list) == 1:
|
324 |
+
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
|
325 |
+
elif len(noise_list) == 2:
|
326 |
+
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
|
327 |
+
else:
|
328 |
+
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
|
329 |
+
|
330 |
+
x_prev = get_x_pred(x, noise_pred_prime, t)
|
331 |
+
noise_list.append(noise_pred)
|
332 |
+
|
333 |
+
return x_prev
|
334 |
+
|
335 |
+
def q_sample(self, x_start, t, noise=None):
|
336 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
337 |
+
return (
|
338 |
+
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
339 |
+
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
340 |
+
)
|
341 |
+
|
342 |
+
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
|
343 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
344 |
+
|
345 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
346 |
+
x_recon = self.denoise_fn(x_noisy, t, cond)
|
347 |
+
|
348 |
+
if loss_type == 'l1':
|
349 |
+
loss = (noise - x_recon).abs().mean()
|
350 |
+
elif loss_type == 'l2':
|
351 |
+
loss = F.mse_loss(noise, x_recon)
|
352 |
+
else:
|
353 |
+
raise NotImplementedError()
|
354 |
+
|
355 |
+
return loss
|
356 |
+
|
357 |
+
def org_forward(self,
|
358 |
+
condition,
|
359 |
+
init_noise=None,
|
360 |
+
gt_spec=None,
|
361 |
+
infer=True,
|
362 |
+
infer_speedup=100,
|
363 |
+
method='pndm',
|
364 |
+
k_step=1000,
|
365 |
+
use_tqdm=True):
|
366 |
+
"""
|
367 |
+
conditioning diffusion, use fastspeech2 encoder output as the condition
|
368 |
+
"""
|
369 |
+
cond = condition
|
370 |
+
b, device = condition.shape[0], condition.device
|
371 |
+
if not infer:
|
372 |
+
spec = self.norm_spec(gt_spec)
|
373 |
+
t = torch.randint(0, self.k_step, (b,), device=device).long()
|
374 |
+
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
|
375 |
+
return self.p_losses(norm_spec, t, cond=cond)
|
376 |
+
else:
|
377 |
+
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
|
378 |
+
|
379 |
+
if gt_spec is None:
|
380 |
+
t = self.k_step
|
381 |
+
if init_noise is None:
|
382 |
+
x = torch.randn(shape, device=device)
|
383 |
+
else:
|
384 |
+
x = init_noise
|
385 |
+
else:
|
386 |
+
t = k_step
|
387 |
+
norm_spec = self.norm_spec(gt_spec)
|
388 |
+
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
|
389 |
+
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
|
390 |
+
|
391 |
+
if method is not None and infer_speedup > 1:
|
392 |
+
if method == 'dpm-solver':
|
393 |
+
from .dpm_solver_pytorch import (
|
394 |
+
DPM_Solver,
|
395 |
+
NoiseScheduleVP,
|
396 |
+
model_wrapper,
|
397 |
+
)
|
398 |
+
# 1. Define the noise schedule.
|
399 |
+
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
|
400 |
+
|
401 |
+
# 2. Convert your discrete-time `model` to the continuous-time
|
402 |
+
# noise prediction model. Here is an example for a diffusion model
|
403 |
+
# `model` with the noise prediction type ("noise") .
|
404 |
+
def my_wrapper(fn):
|
405 |
+
def wrapped(x, t, **kwargs):
|
406 |
+
ret = fn(x, t, **kwargs)
|
407 |
+
if use_tqdm:
|
408 |
+
self.bar.update(1)
|
409 |
+
return ret
|
410 |
+
|
411 |
+
return wrapped
|
412 |
+
|
413 |
+
model_fn = model_wrapper(
|
414 |
+
my_wrapper(self.denoise_fn),
|
415 |
+
noise_schedule,
|
416 |
+
model_type="noise", # or "x_start" or "v" or "score"
|
417 |
+
model_kwargs={"cond": cond}
|
418 |
+
)
|
419 |
+
|
420 |
+
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
|
421 |
+
# (We recommend singlestep DPM-Solver for unconditional sampling)
|
422 |
+
# You can adjust the `steps` to balance the computation
|
423 |
+
# costs and the sample quality.
|
424 |
+
dpm_solver = DPM_Solver(model_fn, noise_schedule)
|
425 |
+
|
426 |
+
steps = t // infer_speedup
|
427 |
+
if use_tqdm:
|
428 |
+
self.bar = tqdm(desc="sample time step", total=steps)
|
429 |
+
x = dpm_solver.sample(
|
430 |
+
x,
|
431 |
+
steps=steps,
|
432 |
+
order=3,
|
433 |
+
skip_type="time_uniform",
|
434 |
+
method="singlestep",
|
435 |
+
)
|
436 |
+
if use_tqdm:
|
437 |
+
self.bar.close()
|
438 |
+
elif method == 'pndm':
|
439 |
+
self.noise_list = deque(maxlen=4)
|
440 |
+
if use_tqdm:
|
441 |
+
for i in tqdm(
|
442 |
+
reversed(range(0, t, infer_speedup)), desc='sample time step',
|
443 |
+
total=t // infer_speedup,
|
444 |
+
):
|
445 |
+
x = self.p_sample_plms(
|
446 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
447 |
+
infer_speedup, cond=cond
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
for i in reversed(range(0, t, infer_speedup)):
|
451 |
+
x = self.p_sample_plms(
|
452 |
+
x, torch.full((b,), i, device=device, dtype=torch.long),
|
453 |
+
infer_speedup, cond=cond
|
454 |
+
)
|
455 |
+
else:
|
456 |
+
raise NotImplementedError(method)
|
457 |
+
else:
|
458 |
+
if use_tqdm:
|
459 |
+
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
|
460 |
+
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
461 |
+
else:
|
462 |
+
for i in reversed(range(0, t)):
|
463 |
+
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
|
464 |
+
x = x.squeeze(1).transpose(1, 2) # [B, T, M]
|
465 |
+
return self.denorm_spec(x).transpose(2, 1)
|
466 |
+
|
467 |
+
def norm_spec(self, x):
|
468 |
+
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
|
469 |
+
|
470 |
+
def denorm_spec(self, x):
|
471 |
+
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
|
472 |
+
|
473 |
+
def get_x_pred(self, x_1, noise_t, t_1, t_prev):
|
474 |
+
a_t = extract(self.alphas_cumprod, t_1)
|
475 |
+
a_prev = extract(self.alphas_cumprod, t_prev)
|
476 |
+
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
|
477 |
+
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
|
478 |
+
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
|
479 |
+
x_pred = x_1 + x_delta
|
480 |
+
return x_pred
|
481 |
+
|
482 |
+
def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
|
483 |
+
cond = torch.randn([1, self.n_hidden, 10]).cpu()
|
484 |
+
if init_noise is None:
|
485 |
+
x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
|
486 |
+
else:
|
487 |
+
x = init_noise
|
488 |
+
pndms = 100
|
489 |
+
|
490 |
+
org_y_x = self.org_forward(cond, init_noise=x)
|
491 |
+
|
492 |
+
device = cond.device
|
493 |
+
n_frames = cond.shape[2]
|
494 |
+
step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
|
495 |
+
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
|
496 |
+
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
|
497 |
+
|
498 |
+
ot = step_range[0]
|
499 |
+
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
|
500 |
+
if export_denoise:
|
501 |
+
torch.onnx.export(
|
502 |
+
self.denoise_fn,
|
503 |
+
(x.cpu(), ot_1.cpu(), cond.cpu()),
|
504 |
+
f"{project_name}_denoise.onnx",
|
505 |
+
input_names=["noise", "time", "condition"],
|
506 |
+
output_names=["noise_pred"],
|
507 |
+
dynamic_axes={
|
508 |
+
"noise": [3],
|
509 |
+
"condition": [2]
|
510 |
+
},
|
511 |
+
opset_version=16
|
512 |
+
)
|
513 |
+
|
514 |
+
for t in step_range:
|
515 |
+
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
|
516 |
+
noise_pred = self.denoise_fn(x, t_1, cond)
|
517 |
+
t_prev = t_1 - pndms
|
518 |
+
t_prev = t_prev * (t_prev > 0)
|
519 |
+
if plms_noise_stage == 0:
|
520 |
+
if export_pred:
|
521 |
+
torch.onnx.export(
|
522 |
+
self.xp,
|
523 |
+
(x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
|
524 |
+
f"{project_name}_pred.onnx",
|
525 |
+
input_names=["noise", "noise_pred", "time", "time_prev"],
|
526 |
+
output_names=["noise_pred_o"],
|
527 |
+
dynamic_axes={
|
528 |
+
"noise": [3],
|
529 |
+
"noise_pred": [3]
|
530 |
+
},
|
531 |
+
opset_version=16
|
532 |
+
)
|
533 |
+
|
534 |
+
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
|
535 |
+
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
|
536 |
+
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
|
537 |
+
|
538 |
+
elif plms_noise_stage == 1:
|
539 |
+
noise_pred_prime = predict_stage1(noise_pred, noise_list)
|
540 |
+
|
541 |
+
elif plms_noise_stage == 2:
|
542 |
+
noise_pred_prime = predict_stage2(noise_pred, noise_list)
|
543 |
+
|
544 |
+
else:
|
545 |
+
noise_pred_prime = predict_stage3(noise_pred, noise_list)
|
546 |
+
|
547 |
+
noise_pred = noise_pred.unsqueeze(0)
|
548 |
+
|
549 |
+
if plms_noise_stage < 3:
|
550 |
+
noise_list = torch.cat((noise_list, noise_pred), dim=0)
|
551 |
+
plms_noise_stage = plms_noise_stage + 1
|
552 |
+
|
553 |
+
else:
|
554 |
+
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
|
555 |
+
|
556 |
+
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
|
557 |
+
if export_after:
|
558 |
+
torch.onnx.export(
|
559 |
+
self.ad,
|
560 |
+
x.cpu(),
|
561 |
+
f"{project_name}_after.onnx",
|
562 |
+
input_names=["x"],
|
563 |
+
output_names=["mel_out"],
|
564 |
+
dynamic_axes={
|
565 |
+
"x": [3]
|
566 |
+
},
|
567 |
+
opset_version=16
|
568 |
+
)
|
569 |
+
x = self.ad(x)
|
570 |
+
|
571 |
+
print((x == org_y_x).all())
|
572 |
+
return x
|
573 |
+
|
574 |
+
def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
|
575 |
+
cond = condition
|
576 |
+
x = init_noise
|
577 |
+
|
578 |
+
device = cond.device
|
579 |
+
n_frames = cond.shape[2]
|
580 |
+
step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
|
581 |
+
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
|
582 |
+
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
|
583 |
+
|
584 |
+
for t in step_range:
|
585 |
+
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
|
586 |
+
noise_pred = self.denoise_fn(x, t_1, cond)
|
587 |
+
t_prev = t_1 - pndms
|
588 |
+
t_prev = t_prev * (t_prev > 0)
|
589 |
+
if plms_noise_stage == 0:
|
590 |
+
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
|
591 |
+
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
|
592 |
+
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
|
593 |
+
|
594 |
+
elif plms_noise_stage == 1:
|
595 |
+
noise_pred_prime = predict_stage1(noise_pred, noise_list)
|
596 |
+
|
597 |
+
elif plms_noise_stage == 2:
|
598 |
+
noise_pred_prime = predict_stage2(noise_pred, noise_list)
|
599 |
+
|
600 |
+
else:
|
601 |
+
noise_pred_prime = predict_stage3(noise_pred, noise_list)
|
602 |
+
|
603 |
+
noise_pred = noise_pred.unsqueeze(0)
|
604 |
+
|
605 |
+
if plms_noise_stage < 3:
|
606 |
+
noise_list = torch.cat((noise_list, noise_pred), dim=0)
|
607 |
+
plms_noise_stage = plms_noise_stage + 1
|
608 |
+
|
609 |
+
else:
|
610 |
+
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
|
611 |
+
|
612 |
+
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
|
613 |
+
x = self.ad(x)
|
614 |
+
return x
|
diffusion/dpm_solver_pytorch.py
ADDED
@@ -0,0 +1,1307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class NoiseScheduleVP:
|
5 |
+
def __init__(
|
6 |
+
self,
|
7 |
+
schedule='discrete',
|
8 |
+
betas=None,
|
9 |
+
alphas_cumprod=None,
|
10 |
+
continuous_beta_0=0.1,
|
11 |
+
continuous_beta_1=20.,
|
12 |
+
dtype=torch.float32,
|
13 |
+
):
|
14 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
15 |
+
|
16 |
+
***
|
17 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
18 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
19 |
+
***
|
20 |
+
|
21 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
22 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
23 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
24 |
+
|
25 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
26 |
+
sigma_t = self.marginal_std(t)
|
27 |
+
lambda_t = self.marginal_lambda(t)
|
28 |
+
|
29 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
30 |
+
|
31 |
+
t = self.inverse_lambda(lambda_t)
|
32 |
+
|
33 |
+
===============================================================
|
34 |
+
|
35 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
36 |
+
|
37 |
+
1. For discrete-time DPMs:
|
38 |
+
|
39 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
40 |
+
t_i = (i + 1) / N
|
41 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
42 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
46 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
47 |
+
|
48 |
+
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
49 |
+
|
50 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
51 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
52 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
53 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
54 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
55 |
+
and
|
56 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
57 |
+
|
58 |
+
|
59 |
+
2. For continuous-time DPMs:
|
60 |
+
|
61 |
+
We support the linear VPSDE for the continuous time setting. The hyperparameters for the noise
|
62 |
+
schedule are the default settings in Yang Song's ScoreSDE:
|
63 |
+
|
64 |
+
Args:
|
65 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
66 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
67 |
+
T: A `float` number. The ending time of the forward process.
|
68 |
+
|
69 |
+
===============================================================
|
70 |
+
|
71 |
+
Args:
|
72 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
73 |
+
'linear' for continuous-time DPMs.
|
74 |
+
Returns:
|
75 |
+
A wrapper object of the forward SDE (VP type).
|
76 |
+
|
77 |
+
===============================================================
|
78 |
+
|
79 |
+
Example:
|
80 |
+
|
81 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
82 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
83 |
+
|
84 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
85 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
86 |
+
|
87 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
88 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
89 |
+
|
90 |
+
"""
|
91 |
+
|
92 |
+
if schedule not in ['discrete', 'linear']:
|
93 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear'".format(schedule))
|
94 |
+
|
95 |
+
self.schedule = schedule
|
96 |
+
if schedule == 'discrete':
|
97 |
+
if betas is not None:
|
98 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
99 |
+
else:
|
100 |
+
assert alphas_cumprod is not None
|
101 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
102 |
+
self.T = 1.
|
103 |
+
self.log_alpha_array = self.numerical_clip_alpha(log_alphas).reshape((1, -1,)).to(dtype=dtype)
|
104 |
+
self.total_N = self.log_alpha_array.shape[1]
|
105 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
|
106 |
+
else:
|
107 |
+
self.T = 1.
|
108 |
+
self.total_N = 1000
|
109 |
+
self.beta_0 = continuous_beta_0
|
110 |
+
self.beta_1 = continuous_beta_1
|
111 |
+
|
112 |
+
def numerical_clip_alpha(self, log_alphas, clipped_lambda=-5.1):
|
113 |
+
"""
|
114 |
+
For some beta schedules such as cosine schedule, the log-SNR has numerical isssues.
|
115 |
+
We clip the log-SNR near t=T within -5.1 to ensure the stability.
|
116 |
+
Such a trick is very useful for diffusion models with the cosine schedule, such as i-DDPM, guided-diffusion and GLIDE.
|
117 |
+
"""
|
118 |
+
log_sigmas = 0.5 * torch.log(1. - torch.exp(2. * log_alphas))
|
119 |
+
lambs = log_alphas - log_sigmas
|
120 |
+
idx = torch.searchsorted(torch.flip(lambs, [0]), clipped_lambda)
|
121 |
+
if idx > 0:
|
122 |
+
log_alphas = log_alphas[:-idx]
|
123 |
+
return log_alphas
|
124 |
+
|
125 |
+
def marginal_log_mean_coeff(self, t):
|
126 |
+
"""
|
127 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
128 |
+
"""
|
129 |
+
if self.schedule == 'discrete':
|
130 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
131 |
+
elif self.schedule == 'linear':
|
132 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
133 |
+
|
134 |
+
def marginal_alpha(self, t):
|
135 |
+
"""
|
136 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
137 |
+
"""
|
138 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
139 |
+
|
140 |
+
def marginal_std(self, t):
|
141 |
+
"""
|
142 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
143 |
+
"""
|
144 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
145 |
+
|
146 |
+
def marginal_lambda(self, t):
|
147 |
+
"""
|
148 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
149 |
+
"""
|
150 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
151 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
152 |
+
return log_mean_coeff - log_std
|
153 |
+
|
154 |
+
def inverse_lambda(self, lamb):
|
155 |
+
"""
|
156 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
157 |
+
"""
|
158 |
+
if self.schedule == 'linear':
|
159 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
160 |
+
Delta = self.beta_0**2 + tmp
|
161 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
162 |
+
elif self.schedule == 'discrete':
|
163 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
164 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
165 |
+
return t.reshape((-1,))
|
166 |
+
|
167 |
+
|
168 |
+
def model_wrapper(
|
169 |
+
model,
|
170 |
+
noise_schedule,
|
171 |
+
model_type="noise",
|
172 |
+
model_kwargs={},
|
173 |
+
guidance_type="uncond",
|
174 |
+
condition=None,
|
175 |
+
unconditional_condition=None,
|
176 |
+
guidance_scale=1.,
|
177 |
+
classifier_fn=None,
|
178 |
+
classifier_kwargs={},
|
179 |
+
):
|
180 |
+
"""Create a wrapper function for the noise prediction model.
|
181 |
+
|
182 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
183 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
184 |
+
|
185 |
+
We support four types of the diffusion model by setting `model_type`:
|
186 |
+
|
187 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
188 |
+
|
189 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
190 |
+
|
191 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
192 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
193 |
+
|
194 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
195 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
196 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
197 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
198 |
+
|
199 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
200 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
201 |
+
```
|
202 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
203 |
+
```
|
204 |
+
|
205 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
206 |
+
1. "uncond": unconditional sampling by DPMs.
|
207 |
+
The input `model` has the following format:
|
208 |
+
``
|
209 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
210 |
+
``
|
211 |
+
|
212 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
213 |
+
The input `model` has the following format:
|
214 |
+
``
|
215 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
216 |
+
``
|
217 |
+
|
218 |
+
The input `classifier_fn` has the following format:
|
219 |
+
``
|
220 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
221 |
+
``
|
222 |
+
|
223 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
224 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
225 |
+
|
226 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
227 |
+
The input `model` has the following format:
|
228 |
+
``
|
229 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
230 |
+
``
|
231 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
232 |
+
|
233 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
234 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
235 |
+
|
236 |
+
|
237 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
238 |
+
or continuous-time labels (i.e. epsilon to T).
|
239 |
+
|
240 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
241 |
+
``
|
242 |
+
def model_fn(x, t_continuous) -> noise:
|
243 |
+
t_input = get_model_input_time(t_continuous)
|
244 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
245 |
+
``
|
246 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
247 |
+
|
248 |
+
===============================================================
|
249 |
+
|
250 |
+
Args:
|
251 |
+
model: A diffusion model with the corresponding format described above.
|
252 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
253 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
254 |
+
"noise" or "x_start" or "v" or "score".
|
255 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
256 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
257 |
+
"uncond" or "classifier" or "classifier-free".
|
258 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
259 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
260 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
261 |
+
Only used for "classifier-free" guidance type.
|
262 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
263 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
264 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
265 |
+
Returns:
|
266 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
267 |
+
"""
|
268 |
+
|
269 |
+
def get_model_input_time(t_continuous):
|
270 |
+
"""
|
271 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
272 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
273 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
274 |
+
"""
|
275 |
+
if noise_schedule.schedule == 'discrete':
|
276 |
+
return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
|
277 |
+
else:
|
278 |
+
return t_continuous
|
279 |
+
|
280 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
281 |
+
t_input = get_model_input_time(t_continuous)
|
282 |
+
if cond is None:
|
283 |
+
output = model(x, t_input, **model_kwargs)
|
284 |
+
else:
|
285 |
+
output = model(x, t_input, cond, **model_kwargs)
|
286 |
+
if model_type == "noise":
|
287 |
+
return output
|
288 |
+
elif model_type == "x_start":
|
289 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
290 |
+
return (x - expand_dims(alpha_t, x.dim()) * output) / expand_dims(sigma_t, x.dim())
|
291 |
+
elif model_type == "v":
|
292 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
293 |
+
return expand_dims(alpha_t, x.dim()) * output + expand_dims(sigma_t, x.dim()) * x
|
294 |
+
elif model_type == "score":
|
295 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
296 |
+
return -expand_dims(sigma_t, x.dim()) * output
|
297 |
+
|
298 |
+
def cond_grad_fn(x, t_input):
|
299 |
+
"""
|
300 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
301 |
+
"""
|
302 |
+
with torch.enable_grad():
|
303 |
+
x_in = x.detach().requires_grad_(True)
|
304 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
305 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
306 |
+
|
307 |
+
def model_fn(x, t_continuous):
|
308 |
+
"""
|
309 |
+
The noise predicition model function that is used for DPM-Solver.
|
310 |
+
"""
|
311 |
+
if guidance_type == "uncond":
|
312 |
+
return noise_pred_fn(x, t_continuous)
|
313 |
+
elif guidance_type == "classifier":
|
314 |
+
assert classifier_fn is not None
|
315 |
+
t_input = get_model_input_time(t_continuous)
|
316 |
+
cond_grad = cond_grad_fn(x, t_input)
|
317 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
318 |
+
noise = noise_pred_fn(x, t_continuous)
|
319 |
+
return noise - guidance_scale * expand_dims(sigma_t, x.dim()) * cond_grad
|
320 |
+
elif guidance_type == "classifier-free":
|
321 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
322 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
323 |
+
else:
|
324 |
+
x_in = torch.cat([x] * 2)
|
325 |
+
t_in = torch.cat([t_continuous] * 2)
|
326 |
+
c_in = torch.cat([unconditional_condition, condition])
|
327 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
328 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
329 |
+
|
330 |
+
assert model_type in ["noise", "x_start", "v", "score"]
|
331 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
332 |
+
return model_fn
|
333 |
+
|
334 |
+
|
335 |
+
class DPM_Solver:
|
336 |
+
def __init__(
|
337 |
+
self,
|
338 |
+
model_fn,
|
339 |
+
noise_schedule,
|
340 |
+
algorithm_type="dpmsolver++",
|
341 |
+
correcting_x0_fn=None,
|
342 |
+
correcting_xt_fn=None,
|
343 |
+
thresholding_max_val=1.,
|
344 |
+
dynamic_thresholding_ratio=0.995,
|
345 |
+
):
|
346 |
+
"""Construct a DPM-Solver.
|
347 |
+
|
348 |
+
We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`).
|
349 |
+
|
350 |
+
We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you
|
351 |
+
can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the
|
352 |
+
dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space
|
353 |
+
DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space
|
354 |
+
DPMs (such as stable-diffusion).
|
355 |
+
|
356 |
+
To support advanced algorithms in image-to-image applications, we also support corrector functions for
|
357 |
+
both x0 and xt.
|
358 |
+
|
359 |
+
Args:
|
360 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
361 |
+
``
|
362 |
+
def model_fn(x, t_continuous):
|
363 |
+
return noise
|
364 |
+
``
|
365 |
+
The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`.
|
366 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
367 |
+
algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++".
|
368 |
+
correcting_x0_fn: A `str` or a function with the following format:
|
369 |
+
```
|
370 |
+
def correcting_x0_fn(x0, t):
|
371 |
+
x0_new = ...
|
372 |
+
return x0_new
|
373 |
+
```
|
374 |
+
This function is to correct the outputs of the data prediction model at each sampling step. e.g.,
|
375 |
+
```
|
376 |
+
x0_pred = data_pred_model(xt, t)
|
377 |
+
if correcting_x0_fn is not None:
|
378 |
+
x0_pred = correcting_x0_fn(x0_pred, t)
|
379 |
+
xt_1 = update(x0_pred, xt, t)
|
380 |
+
```
|
381 |
+
If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1].
|
382 |
+
correcting_xt_fn: A function with the following format:
|
383 |
+
```
|
384 |
+
def correcting_xt_fn(xt, t, step):
|
385 |
+
x_new = ...
|
386 |
+
return x_new
|
387 |
+
```
|
388 |
+
This function is to correct the intermediate samples xt at each sampling step. e.g.,
|
389 |
+
```
|
390 |
+
xt = ...
|
391 |
+
xt = correcting_xt_fn(xt, t, step)
|
392 |
+
```
|
393 |
+
thresholding_max_val: A `float`. The max value for thresholding.
|
394 |
+
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
|
395 |
+
dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details).
|
396 |
+
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
|
397 |
+
|
398 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
|
399 |
+
Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models
|
400 |
+
with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
401 |
+
"""
|
402 |
+
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
|
403 |
+
self.noise_schedule = noise_schedule
|
404 |
+
assert algorithm_type in ["dpmsolver", "dpmsolver++"]
|
405 |
+
self.algorithm_type = algorithm_type
|
406 |
+
if correcting_x0_fn == "dynamic_thresholding":
|
407 |
+
self.correcting_x0_fn = self.dynamic_thresholding_fn
|
408 |
+
else:
|
409 |
+
self.correcting_x0_fn = correcting_x0_fn
|
410 |
+
self.correcting_xt_fn = correcting_xt_fn
|
411 |
+
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
|
412 |
+
self.thresholding_max_val = thresholding_max_val
|
413 |
+
|
414 |
+
def dynamic_thresholding_fn(self, x0, t):
|
415 |
+
"""
|
416 |
+
The dynamic thresholding method.
|
417 |
+
"""
|
418 |
+
dims = x0.dim()
|
419 |
+
p = self.dynamic_thresholding_ratio
|
420 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
421 |
+
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
422 |
+
x0 = torch.clamp(x0, -s, s) / s
|
423 |
+
return x0
|
424 |
+
|
425 |
+
def noise_prediction_fn(self, x, t):
|
426 |
+
"""
|
427 |
+
Return the noise prediction model.
|
428 |
+
"""
|
429 |
+
return self.model(x, t)
|
430 |
+
|
431 |
+
def data_prediction_fn(self, x, t):
|
432 |
+
"""
|
433 |
+
Return the data prediction model (with corrector).
|
434 |
+
"""
|
435 |
+
noise = self.noise_prediction_fn(x, t)
|
436 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
437 |
+
x0 = (x - sigma_t * noise) / alpha_t
|
438 |
+
if self.correcting_x0_fn is not None:
|
439 |
+
x0 = self.correcting_x0_fn(x0, t)
|
440 |
+
return x0
|
441 |
+
|
442 |
+
def model_fn(self, x, t):
|
443 |
+
"""
|
444 |
+
Convert the model to the noise prediction model or the data prediction model.
|
445 |
+
"""
|
446 |
+
if self.algorithm_type == "dpmsolver++":
|
447 |
+
return self.data_prediction_fn(x, t)
|
448 |
+
else:
|
449 |
+
return self.noise_prediction_fn(x, t)
|
450 |
+
|
451 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
452 |
+
"""Compute the intermediate time steps for sampling.
|
453 |
+
|
454 |
+
Args:
|
455 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
456 |
+
- 'logSNR': uniform logSNR for the time steps.
|
457 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
458 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
459 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
460 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
461 |
+
N: A `int`. The total number of the spacing of the time steps.
|
462 |
+
device: A torch device.
|
463 |
+
Returns:
|
464 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
465 |
+
"""
|
466 |
+
if skip_type == 'logSNR':
|
467 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
468 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
469 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
470 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
471 |
+
elif skip_type == 'time_uniform':
|
472 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
473 |
+
elif skip_type == 'time_quadratic':
|
474 |
+
t_order = 2
|
475 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
476 |
+
return t
|
477 |
+
else:
|
478 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
479 |
+
|
480 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
481 |
+
"""
|
482 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
483 |
+
|
484 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
485 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
486 |
+
- If order == 1:
|
487 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
488 |
+
- If order == 2:
|
489 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
490 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
491 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
492 |
+
- If order == 3:
|
493 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
494 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
495 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
496 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
497 |
+
|
498 |
+
============================================
|
499 |
+
Args:
|
500 |
+
order: A `int`. The max order for the solver (2 or 3).
|
501 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
502 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
503 |
+
- 'logSNR': uniform logSNR for the time steps.
|
504 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
505 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
506 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
507 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
508 |
+
device: A torch device.
|
509 |
+
Returns:
|
510 |
+
orders: A list of the solver order of each step.
|
511 |
+
"""
|
512 |
+
if order == 3:
|
513 |
+
K = steps // 3 + 1
|
514 |
+
if steps % 3 == 0:
|
515 |
+
orders = [3,] * (K - 2) + [2, 1]
|
516 |
+
elif steps % 3 == 1:
|
517 |
+
orders = [3,] * (K - 1) + [1]
|
518 |
+
else:
|
519 |
+
orders = [3,] * (K - 1) + [2]
|
520 |
+
elif order == 2:
|
521 |
+
if steps % 2 == 0:
|
522 |
+
K = steps // 2
|
523 |
+
orders = [2,] * K
|
524 |
+
else:
|
525 |
+
K = steps // 2 + 1
|
526 |
+
orders = [2,] * (K - 1) + [1]
|
527 |
+
elif order == 1:
|
528 |
+
K = 1
|
529 |
+
orders = [1,] * steps
|
530 |
+
else:
|
531 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
532 |
+
if skip_type == 'logSNR':
|
533 |
+
# To reproduce the results in DPM-Solver paper
|
534 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
535 |
+
else:
|
536 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
537 |
+
return timesteps_outer, orders
|
538 |
+
|
539 |
+
def denoise_to_zero_fn(self, x, s):
|
540 |
+
"""
|
541 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
542 |
+
"""
|
543 |
+
return self.data_prediction_fn(x, s)
|
544 |
+
|
545 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
546 |
+
"""
|
547 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
548 |
+
|
549 |
+
Args:
|
550 |
+
x: A pytorch tensor. The initial value at time `s`.
|
551 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
552 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
553 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
554 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
555 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
556 |
+
Returns:
|
557 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
558 |
+
"""
|
559 |
+
ns = self.noise_schedule
|
560 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
561 |
+
h = lambda_t - lambda_s
|
562 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
563 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
564 |
+
alpha_t = torch.exp(log_alpha_t)
|
565 |
+
|
566 |
+
if self.algorithm_type == "dpmsolver++":
|
567 |
+
phi_1 = torch.expm1(-h)
|
568 |
+
if model_s is None:
|
569 |
+
model_s = self.model_fn(x, s)
|
570 |
+
x_t = (
|
571 |
+
sigma_t / sigma_s * x
|
572 |
+
- alpha_t * phi_1 * model_s
|
573 |
+
)
|
574 |
+
if return_intermediate:
|
575 |
+
return x_t, {'model_s': model_s}
|
576 |
+
else:
|
577 |
+
return x_t
|
578 |
+
else:
|
579 |
+
phi_1 = torch.expm1(h)
|
580 |
+
if model_s is None:
|
581 |
+
model_s = self.model_fn(x, s)
|
582 |
+
x_t = (
|
583 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
584 |
+
- (sigma_t * phi_1) * model_s
|
585 |
+
)
|
586 |
+
if return_intermediate:
|
587 |
+
return x_t, {'model_s': model_s}
|
588 |
+
else:
|
589 |
+
return x_t
|
590 |
+
|
591 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpmsolver'):
|
592 |
+
"""
|
593 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
594 |
+
|
595 |
+
Args:
|
596 |
+
x: A pytorch tensor. The initial value at time `s`.
|
597 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
598 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
599 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
600 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
601 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
602 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
603 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
604 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
605 |
+
Returns:
|
606 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
607 |
+
"""
|
608 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
609 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
610 |
+
if r1 is None:
|
611 |
+
r1 = 0.5
|
612 |
+
ns = self.noise_schedule
|
613 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
614 |
+
h = lambda_t - lambda_s
|
615 |
+
lambda_s1 = lambda_s + r1 * h
|
616 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
617 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
|
618 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
619 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
620 |
+
|
621 |
+
if self.algorithm_type == "dpmsolver++":
|
622 |
+
phi_11 = torch.expm1(-r1 * h)
|
623 |
+
phi_1 = torch.expm1(-h)
|
624 |
+
|
625 |
+
if model_s is None:
|
626 |
+
model_s = self.model_fn(x, s)
|
627 |
+
x_s1 = (
|
628 |
+
(sigma_s1 / sigma_s) * x
|
629 |
+
- (alpha_s1 * phi_11) * model_s
|
630 |
+
)
|
631 |
+
model_s1 = self.model_fn(x_s1, s1)
|
632 |
+
if solver_type == 'dpmsolver':
|
633 |
+
x_t = (
|
634 |
+
(sigma_t / sigma_s) * x
|
635 |
+
- (alpha_t * phi_1) * model_s
|
636 |
+
- (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s)
|
637 |
+
)
|
638 |
+
elif solver_type == 'taylor':
|
639 |
+
x_t = (
|
640 |
+
(sigma_t / sigma_s) * x
|
641 |
+
- (alpha_t * phi_1) * model_s
|
642 |
+
+ (1. / r1) * (alpha_t * (phi_1 / h + 1.)) * (model_s1 - model_s)
|
643 |
+
)
|
644 |
+
else:
|
645 |
+
phi_11 = torch.expm1(r1 * h)
|
646 |
+
phi_1 = torch.expm1(h)
|
647 |
+
|
648 |
+
if model_s is None:
|
649 |
+
model_s = self.model_fn(x, s)
|
650 |
+
x_s1 = (
|
651 |
+
torch.exp(log_alpha_s1 - log_alpha_s) * x
|
652 |
+
- (sigma_s1 * phi_11) * model_s
|
653 |
+
)
|
654 |
+
model_s1 = self.model_fn(x_s1, s1)
|
655 |
+
if solver_type == 'dpmsolver':
|
656 |
+
x_t = (
|
657 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
658 |
+
- (sigma_t * phi_1) * model_s
|
659 |
+
- (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s)
|
660 |
+
)
|
661 |
+
elif solver_type == 'taylor':
|
662 |
+
x_t = (
|
663 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
664 |
+
- (sigma_t * phi_1) * model_s
|
665 |
+
- (1. / r1) * (sigma_t * (phi_1 / h - 1.)) * (model_s1 - model_s)
|
666 |
+
)
|
667 |
+
if return_intermediate:
|
668 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
669 |
+
else:
|
670 |
+
return x_t
|
671 |
+
|
672 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpmsolver'):
|
673 |
+
"""
|
674 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
675 |
+
|
676 |
+
Args:
|
677 |
+
x: A pytorch tensor. The initial value at time `s`.
|
678 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
679 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
680 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
681 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
682 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
683 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
684 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
685 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
686 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
687 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
688 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
689 |
+
Returns:
|
690 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
691 |
+
"""
|
692 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
693 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
694 |
+
if r1 is None:
|
695 |
+
r1 = 1. / 3.
|
696 |
+
if r2 is None:
|
697 |
+
r2 = 2. / 3.
|
698 |
+
ns = self.noise_schedule
|
699 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
700 |
+
h = lambda_t - lambda_s
|
701 |
+
lambda_s1 = lambda_s + r1 * h
|
702 |
+
lambda_s2 = lambda_s + r2 * h
|
703 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
704 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
705 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
706 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
|
707 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
708 |
+
|
709 |
+
if self.algorithm_type == "dpmsolver++":
|
710 |
+
phi_11 = torch.expm1(-r1 * h)
|
711 |
+
phi_12 = torch.expm1(-r2 * h)
|
712 |
+
phi_1 = torch.expm1(-h)
|
713 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
714 |
+
phi_2 = phi_1 / h + 1.
|
715 |
+
phi_3 = phi_2 / h - 0.5
|
716 |
+
|
717 |
+
if model_s is None:
|
718 |
+
model_s = self.model_fn(x, s)
|
719 |
+
if model_s1 is None:
|
720 |
+
x_s1 = (
|
721 |
+
(sigma_s1 / sigma_s) * x
|
722 |
+
- (alpha_s1 * phi_11) * model_s
|
723 |
+
)
|
724 |
+
model_s1 = self.model_fn(x_s1, s1)
|
725 |
+
x_s2 = (
|
726 |
+
(sigma_s2 / sigma_s) * x
|
727 |
+
- (alpha_s2 * phi_12) * model_s
|
728 |
+
+ r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s)
|
729 |
+
)
|
730 |
+
model_s2 = self.model_fn(x_s2, s2)
|
731 |
+
if solver_type == 'dpmsolver':
|
732 |
+
x_t = (
|
733 |
+
(sigma_t / sigma_s) * x
|
734 |
+
- (alpha_t * phi_1) * model_s
|
735 |
+
+ (1. / r2) * (alpha_t * phi_2) * (model_s2 - model_s)
|
736 |
+
)
|
737 |
+
elif solver_type == 'taylor':
|
738 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
739 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
740 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
741 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
742 |
+
x_t = (
|
743 |
+
(sigma_t / sigma_s) * x
|
744 |
+
- (alpha_t * phi_1) * model_s
|
745 |
+
+ (alpha_t * phi_2) * D1
|
746 |
+
- (alpha_t * phi_3) * D2
|
747 |
+
)
|
748 |
+
else:
|
749 |
+
phi_11 = torch.expm1(r1 * h)
|
750 |
+
phi_12 = torch.expm1(r2 * h)
|
751 |
+
phi_1 = torch.expm1(h)
|
752 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
753 |
+
phi_2 = phi_1 / h - 1.
|
754 |
+
phi_3 = phi_2 / h - 0.5
|
755 |
+
|
756 |
+
if model_s is None:
|
757 |
+
model_s = self.model_fn(x, s)
|
758 |
+
if model_s1 is None:
|
759 |
+
x_s1 = (
|
760 |
+
(torch.exp(log_alpha_s1 - log_alpha_s)) * x
|
761 |
+
- (sigma_s1 * phi_11) * model_s
|
762 |
+
)
|
763 |
+
model_s1 = self.model_fn(x_s1, s1)
|
764 |
+
x_s2 = (
|
765 |
+
(torch.exp(log_alpha_s2 - log_alpha_s)) * x
|
766 |
+
- (sigma_s2 * phi_12) * model_s
|
767 |
+
- r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s)
|
768 |
+
)
|
769 |
+
model_s2 = self.model_fn(x_s2, s2)
|
770 |
+
if solver_type == 'dpmsolver':
|
771 |
+
x_t = (
|
772 |
+
(torch.exp(log_alpha_t - log_alpha_s)) * x
|
773 |
+
- (sigma_t * phi_1) * model_s
|
774 |
+
- (1. / r2) * (sigma_t * phi_2) * (model_s2 - model_s)
|
775 |
+
)
|
776 |
+
elif solver_type == 'taylor':
|
777 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
778 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
779 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
780 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
781 |
+
x_t = (
|
782 |
+
(torch.exp(log_alpha_t - log_alpha_s)) * x
|
783 |
+
- (sigma_t * phi_1) * model_s
|
784 |
+
- (sigma_t * phi_2) * D1
|
785 |
+
- (sigma_t * phi_3) * D2
|
786 |
+
)
|
787 |
+
|
788 |
+
if return_intermediate:
|
789 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
790 |
+
else:
|
791 |
+
return x_t
|
792 |
+
|
793 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
|
794 |
+
"""
|
795 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
796 |
+
|
797 |
+
Args:
|
798 |
+
x: A pytorch tensor. The initial value at time `s`.
|
799 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
800 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
801 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
802 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
803 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
804 |
+
Returns:
|
805 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
806 |
+
"""
|
807 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
808 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
809 |
+
ns = self.noise_schedule
|
810 |
+
model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1]
|
811 |
+
t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1]
|
812 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
813 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
814 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
815 |
+
alpha_t = torch.exp(log_alpha_t)
|
816 |
+
|
817 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
818 |
+
h = lambda_t - lambda_prev_0
|
819 |
+
r0 = h_0 / h
|
820 |
+
D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
|
821 |
+
if self.algorithm_type == "dpmsolver++":
|
822 |
+
phi_1 = torch.expm1(-h)
|
823 |
+
if solver_type == 'dpmsolver':
|
824 |
+
x_t = (
|
825 |
+
(sigma_t / sigma_prev_0) * x
|
826 |
+
- (alpha_t * phi_1) * model_prev_0
|
827 |
+
- 0.5 * (alpha_t * phi_1) * D1_0
|
828 |
+
)
|
829 |
+
elif solver_type == 'taylor':
|
830 |
+
x_t = (
|
831 |
+
(sigma_t / sigma_prev_0) * x
|
832 |
+
- (alpha_t * phi_1) * model_prev_0
|
833 |
+
+ (alpha_t * (phi_1 / h + 1.)) * D1_0
|
834 |
+
)
|
835 |
+
else:
|
836 |
+
phi_1 = torch.expm1(h)
|
837 |
+
if solver_type == 'dpmsolver':
|
838 |
+
x_t = (
|
839 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
840 |
+
- (sigma_t * phi_1) * model_prev_0
|
841 |
+
- 0.5 * (sigma_t * phi_1) * D1_0
|
842 |
+
)
|
843 |
+
elif solver_type == 'taylor':
|
844 |
+
x_t = (
|
845 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
846 |
+
- (sigma_t * phi_1) * model_prev_0
|
847 |
+
- (sigma_t * (phi_1 / h - 1.)) * D1_0
|
848 |
+
)
|
849 |
+
return x_t
|
850 |
+
|
851 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpmsolver'):
|
852 |
+
"""
|
853 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
854 |
+
|
855 |
+
Args:
|
856 |
+
x: A pytorch tensor. The initial value at time `s`.
|
857 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
858 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
859 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
860 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
861 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
862 |
+
Returns:
|
863 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
864 |
+
"""
|
865 |
+
ns = self.noise_schedule
|
866 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
867 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
868 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
869 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
870 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
871 |
+
alpha_t = torch.exp(log_alpha_t)
|
872 |
+
|
873 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
874 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
875 |
+
h = lambda_t - lambda_prev_0
|
876 |
+
r0, r1 = h_0 / h, h_1 / h
|
877 |
+
D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
|
878 |
+
D1_1 = (1. / r1) * (model_prev_1 - model_prev_2)
|
879 |
+
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
|
880 |
+
D2 = (1. / (r0 + r1)) * (D1_0 - D1_1)
|
881 |
+
if self.algorithm_type == "dpmsolver++":
|
882 |
+
phi_1 = torch.expm1(-h)
|
883 |
+
phi_2 = phi_1 / h + 1.
|
884 |
+
phi_3 = phi_2 / h - 0.5
|
885 |
+
x_t = (
|
886 |
+
(sigma_t / sigma_prev_0) * x
|
887 |
+
- (alpha_t * phi_1) * model_prev_0
|
888 |
+
+ (alpha_t * phi_2) * D1
|
889 |
+
- (alpha_t * phi_3) * D2
|
890 |
+
)
|
891 |
+
else:
|
892 |
+
phi_1 = torch.expm1(h)
|
893 |
+
phi_2 = phi_1 / h - 1.
|
894 |
+
phi_3 = phi_2 / h - 0.5
|
895 |
+
x_t = (
|
896 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
897 |
+
- (sigma_t * phi_1) * model_prev_0
|
898 |
+
- (sigma_t * phi_2) * D1
|
899 |
+
- (sigma_t * phi_3) * D2
|
900 |
+
)
|
901 |
+
return x_t
|
902 |
+
|
903 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpmsolver', r1=None, r2=None):
|
904 |
+
"""
|
905 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
906 |
+
|
907 |
+
Args:
|
908 |
+
x: A pytorch tensor. The initial value at time `s`.
|
909 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
910 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
911 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
912 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
913 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
914 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
915 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
916 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
917 |
+
Returns:
|
918 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
919 |
+
"""
|
920 |
+
if order == 1:
|
921 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
922 |
+
elif order == 2:
|
923 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
|
924 |
+
elif order == 3:
|
925 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
|
926 |
+
else:
|
927 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
928 |
+
|
929 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpmsolver'):
|
930 |
+
"""
|
931 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
932 |
+
|
933 |
+
Args:
|
934 |
+
x: A pytorch tensor. The initial value at time `s`.
|
935 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
936 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
937 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
938 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
939 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
940 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
941 |
+
Returns:
|
942 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
943 |
+
"""
|
944 |
+
if order == 1:
|
945 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
946 |
+
elif order == 2:
|
947 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
948 |
+
elif order == 3:
|
949 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
950 |
+
else:
|
951 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
952 |
+
|
953 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpmsolver'):
|
954 |
+
"""
|
955 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
956 |
+
|
957 |
+
Args:
|
958 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
959 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
960 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
961 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
962 |
+
h_init: A `float`. The initial step size (for logSNR).
|
963 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
964 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
965 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
966 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
967 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
968 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
969 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
970 |
+
Returns:
|
971 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
972 |
+
|
973 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
974 |
+
"""
|
975 |
+
ns = self.noise_schedule
|
976 |
+
s = t_T * torch.ones((1,)).to(x)
|
977 |
+
lambda_s = ns.marginal_lambda(s)
|
978 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
979 |
+
h = h_init * torch.ones_like(s).to(x)
|
980 |
+
x_prev = x
|
981 |
+
nfe = 0
|
982 |
+
if order == 2:
|
983 |
+
r1 = 0.5
|
984 |
+
def lower_update(x, s, t):
|
985 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
986 |
+
def higher_update(x, s, t, **kwargs):
|
987 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
|
988 |
+
elif order == 3:
|
989 |
+
r1, r2 = 1. / 3., 2. / 3.
|
990 |
+
def lower_update(x, s, t):
|
991 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
|
992 |
+
def higher_update(x, s, t, **kwargs):
|
993 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
|
994 |
+
else:
|
995 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
996 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
997 |
+
t = ns.inverse_lambda(lambda_s + h)
|
998 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
999 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
1000 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
1001 |
+
def norm_fn(v):
|
1002 |
+
return torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
1003 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
1004 |
+
if torch.all(E <= 1.):
|
1005 |
+
x = x_higher
|
1006 |
+
s = t
|
1007 |
+
x_prev = x_lower
|
1008 |
+
lambda_s = ns.marginal_lambda(s)
|
1009 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
1010 |
+
nfe += order
|
1011 |
+
print('adaptive solver nfe', nfe)
|
1012 |
+
return x
|
1013 |
+
|
1014 |
+
def add_noise(self, x, t, noise=None):
|
1015 |
+
"""
|
1016 |
+
Compute the noised input xt = alpha_t * x + sigma_t * noise.
|
1017 |
+
|
1018 |
+
Args:
|
1019 |
+
x: A `torch.Tensor` with shape `(batch_size, *shape)`.
|
1020 |
+
t: A `torch.Tensor` with shape `(t_size,)`.
|
1021 |
+
Returns:
|
1022 |
+
xt with shape `(t_size, batch_size, *shape)`.
|
1023 |
+
"""
|
1024 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
1025 |
+
if noise is None:
|
1026 |
+
noise = torch.randn((t.shape[0], *x.shape), device=x.device)
|
1027 |
+
x = x.reshape((-1, *x.shape))
|
1028 |
+
xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise
|
1029 |
+
if t.shape[0] == 1:
|
1030 |
+
return xt.squeeze(0)
|
1031 |
+
else:
|
1032 |
+
return xt
|
1033 |
+
|
1034 |
+
def inverse(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
|
1035 |
+
method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
|
1036 |
+
atol=0.0078, rtol=0.05, return_intermediate=False,
|
1037 |
+
):
|
1038 |
+
"""
|
1039 |
+
Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver.
|
1040 |
+
For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training.
|
1041 |
+
"""
|
1042 |
+
t_0 = 1. / self.noise_schedule.total_N if t_start is None else t_start
|
1043 |
+
t_T = self.noise_schedule.T if t_end is None else t_end
|
1044 |
+
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
1045 |
+
return self.sample(x, steps=steps, t_start=t_0, t_end=t_T, order=order, skip_type=skip_type,
|
1046 |
+
method=method, lower_order_final=lower_order_final, denoise_to_zero=denoise_to_zero, solver_type=solver_type,
|
1047 |
+
atol=atol, rtol=rtol, return_intermediate=return_intermediate)
|
1048 |
+
|
1049 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
|
1050 |
+
method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
|
1051 |
+
atol=0.0078, rtol=0.05, return_intermediate=False,
|
1052 |
+
):
|
1053 |
+
"""
|
1054 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
1055 |
+
|
1056 |
+
=====================================================
|
1057 |
+
|
1058 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
1059 |
+
- 'singlestep':
|
1060 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
1061 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
1062 |
+
The total number of function evaluations (NFE) == `steps`.
|
1063 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
1064 |
+
- If `order` == 1:
|
1065 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
1066 |
+
- If `order` == 2:
|
1067 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
1068 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
1069 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
1070 |
+
- If `order` == 3:
|
1071 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
1072 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
1073 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
1074 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
1075 |
+
- 'multistep':
|
1076 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
1077 |
+
We initialize the first `order` values by lower order multistep solvers.
|
1078 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
1079 |
+
Denote K = steps.
|
1080 |
+
- If `order` == 1:
|
1081 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
1082 |
+
- If `order` == 2:
|
1083 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
1084 |
+
- If `order` == 3:
|
1085 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
1086 |
+
- 'singlestep_fixed':
|
1087 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
1088 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
1089 |
+
- 'adaptive':
|
1090 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
1091 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
1092 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
1093 |
+
(NFE) and the sample quality.
|
1094 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
1095 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
1096 |
+
|
1097 |
+
=====================================================
|
1098 |
+
|
1099 |
+
Some advices for choosing the algorithm:
|
1100 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
1101 |
+
Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`.
|
1102 |
+
e.g., DPM-Solver:
|
1103 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
|
1104 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1105 |
+
skip_type='time_uniform', method='singlestep')
|
1106 |
+
e.g., DPM-Solver++:
|
1107 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
1108 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1109 |
+
skip_type='time_uniform', method='singlestep')
|
1110 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
1111 |
+
Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`.
|
1112 |
+
e.g.
|
1113 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
1114 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
1115 |
+
skip_type='time_uniform', method='multistep')
|
1116 |
+
|
1117 |
+
We support three types of `skip_type`:
|
1118 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1119 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1120 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1121 |
+
|
1122 |
+
=====================================================
|
1123 |
+
Args:
|
1124 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1125 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1126 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1127 |
+
t_start: A `float`. The starting time of the sampling.
|
1128 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1129 |
+
t_end: A `float`. The ending time of the sampling.
|
1130 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1131 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1132 |
+
For discrete-time DPMs:
|
1133 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1134 |
+
For continuous-time DPMs:
|
1135 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1136 |
+
order: A `int`. The order of DPM-Solver.
|
1137 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1138 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1139 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1140 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1141 |
+
|
1142 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1143 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1144 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1145 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1146 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1147 |
+
it for high-resolutional images.
|
1148 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1149 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1150 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1151 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1152 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`.
|
1153 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1154 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1155 |
+
return_intermediate: A `bool`. Whether to save the xt at each step.
|
1156 |
+
When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0.
|
1157 |
+
Returns:
|
1158 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1159 |
+
|
1160 |
+
"""
|
1161 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1162 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1163 |
+
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
1164 |
+
if return_intermediate:
|
1165 |
+
assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when saving intermediate values"
|
1166 |
+
if self.correcting_xt_fn is not None:
|
1167 |
+
assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when correcting_xt_fn is not None"
|
1168 |
+
device = x.device
|
1169 |
+
intermediates = []
|
1170 |
+
with torch.no_grad():
|
1171 |
+
if method == 'adaptive':
|
1172 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
|
1173 |
+
elif method == 'multistep':
|
1174 |
+
assert steps >= order
|
1175 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1176 |
+
assert timesteps.shape[0] - 1 == steps
|
1177 |
+
# Init the initial values.
|
1178 |
+
step = 0
|
1179 |
+
t = timesteps[step]
|
1180 |
+
t_prev_list = [t]
|
1181 |
+
model_prev_list = [self.model_fn(x, t)]
|
1182 |
+
if self.correcting_xt_fn is not None:
|
1183 |
+
x = self.correcting_xt_fn(x, t, step)
|
1184 |
+
if return_intermediate:
|
1185 |
+
intermediates.append(x)
|
1186 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1187 |
+
for step in range(1, order):
|
1188 |
+
t = timesteps[step]
|
1189 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step, solver_type=solver_type)
|
1190 |
+
if self.correcting_xt_fn is not None:
|
1191 |
+
x = self.correcting_xt_fn(x, t, step)
|
1192 |
+
if return_intermediate:
|
1193 |
+
intermediates.append(x)
|
1194 |
+
t_prev_list.append(t)
|
1195 |
+
model_prev_list.append(self.model_fn(x, t))
|
1196 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1197 |
+
for step in range(order, steps + 1):
|
1198 |
+
t = timesteps[step]
|
1199 |
+
# We only use lower order for steps < 10
|
1200 |
+
if lower_order_final and steps < 10:
|
1201 |
+
step_order = min(order, steps + 1 - step)
|
1202 |
+
else:
|
1203 |
+
step_order = order
|
1204 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type)
|
1205 |
+
if self.correcting_xt_fn is not None:
|
1206 |
+
x = self.correcting_xt_fn(x, t, step)
|
1207 |
+
if return_intermediate:
|
1208 |
+
intermediates.append(x)
|
1209 |
+
for i in range(order - 1):
|
1210 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1211 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1212 |
+
t_prev_list[-1] = t
|
1213 |
+
# We do not need to evaluate the final model value.
|
1214 |
+
if step < steps:
|
1215 |
+
model_prev_list[-1] = self.model_fn(x, t)
|
1216 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
1217 |
+
if method == 'singlestep':
|
1218 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
|
1219 |
+
elif method == 'singlestep_fixed':
|
1220 |
+
K = steps // order
|
1221 |
+
orders = [order,] * K
|
1222 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1223 |
+
for step, order in enumerate(orders):
|
1224 |
+
s, t = timesteps_outer[step], timesteps_outer[step + 1]
|
1225 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device)
|
1226 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1227 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
1228 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1229 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1230 |
+
x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1231 |
+
if self.correcting_xt_fn is not None:
|
1232 |
+
x = self.correcting_xt_fn(x, t, step)
|
1233 |
+
if return_intermediate:
|
1234 |
+
intermediates.append(x)
|
1235 |
+
else:
|
1236 |
+
raise ValueError("Got wrong method {}".format(method))
|
1237 |
+
if denoise_to_zero:
|
1238 |
+
t = torch.ones((1,)).to(device) * t_0
|
1239 |
+
x = self.denoise_to_zero_fn(x, t)
|
1240 |
+
if self.correcting_xt_fn is not None:
|
1241 |
+
x = self.correcting_xt_fn(x, t, step + 1)
|
1242 |
+
if return_intermediate:
|
1243 |
+
intermediates.append(x)
|
1244 |
+
if return_intermediate:
|
1245 |
+
return x, intermediates
|
1246 |
+
else:
|
1247 |
+
return x
|
1248 |
+
|
1249 |
+
|
1250 |
+
|
1251 |
+
#############################################################
|
1252 |
+
# other utility functions
|
1253 |
+
#############################################################
|
1254 |
+
|
1255 |
+
def interpolate_fn(x, xp, yp):
|
1256 |
+
"""
|
1257 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1258 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1259 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1260 |
+
|
1261 |
+
Args:
|
1262 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1263 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1264 |
+
yp: PyTorch tensor with shape [C, K].
|
1265 |
+
Returns:
|
1266 |
+
The function values f(x), with shape [N, C].
|
1267 |
+
"""
|
1268 |
+
N, K = x.shape[0], xp.shape[1]
|
1269 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1270 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1271 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1272 |
+
cand_start_idx = x_idx - 1
|
1273 |
+
start_idx = torch.where(
|
1274 |
+
torch.eq(x_idx, 0),
|
1275 |
+
torch.tensor(1, device=x.device),
|
1276 |
+
torch.where(
|
1277 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1278 |
+
),
|
1279 |
+
)
|
1280 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1281 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1282 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1283 |
+
start_idx2 = torch.where(
|
1284 |
+
torch.eq(x_idx, 0),
|
1285 |
+
torch.tensor(0, device=x.device),
|
1286 |
+
torch.where(
|
1287 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1288 |
+
),
|
1289 |
+
)
|
1290 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1291 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1292 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1293 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1294 |
+
return cand
|
1295 |
+
|
1296 |
+
|
1297 |
+
def expand_dims(v, dims):
|
1298 |
+
"""
|
1299 |
+
Expand the tensor `v` to the dim `dims`.
|
1300 |
+
|
1301 |
+
Args:
|
1302 |
+
`v`: a PyTorch tensor with shape [N].
|
1303 |
+
`dim`: a `int`.
|
1304 |
+
Returns:
|
1305 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1306 |
+
"""
|
1307 |
+
return v[(...,) + (None,)*(dims - 1)]
|
diffusion/how to export onnx.md
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- Open [onnx_export](onnx_export.py)
|
2 |
+
- project_name = "dddsp" change "project_name" to your project name
|
3 |
+
- model_path = f'{project_name}/model_500000.pt' change "model_path" to your model path
|
4 |
+
- Run
|
diffusion/infer_gt_mel.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
from diffusion.unit2mel import load_model_vocoder
|
5 |
+
|
6 |
+
|
7 |
+
class DiffGtMel:
|
8 |
+
def __init__(self, project_path=None, device=None):
|
9 |
+
self.project_path = project_path
|
10 |
+
if device is not None:
|
11 |
+
self.device = device
|
12 |
+
else:
|
13 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
self.model = None
|
15 |
+
self.vocoder = None
|
16 |
+
self.args = None
|
17 |
+
|
18 |
+
def flush_model(self, project_path, ddsp_config=None):
|
19 |
+
if (self.model is None) or (project_path != self.project_path):
|
20 |
+
model, vocoder, args = load_model_vocoder(project_path, device=self.device)
|
21 |
+
if self.check_args(ddsp_config, args):
|
22 |
+
self.model = model
|
23 |
+
self.vocoder = vocoder
|
24 |
+
self.args = args
|
25 |
+
|
26 |
+
def check_args(self, args1, args2):
|
27 |
+
if args1.data.block_size != args2.data.block_size:
|
28 |
+
raise ValueError("DDSP与DIFF模型的block_size不一致")
|
29 |
+
if args1.data.sampling_rate != args2.data.sampling_rate:
|
30 |
+
raise ValueError("DDSP与DIFF模型的sampling_rate不一致")
|
31 |
+
if args1.data.encoder != args2.data.encoder:
|
32 |
+
raise ValueError("DDSP与DIFF模型的encoder不一致")
|
33 |
+
return True
|
34 |
+
|
35 |
+
def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm',
|
36 |
+
spk_mix_dict=None, start_frame=0):
|
37 |
+
input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate)
|
38 |
+
out_mel = self.model(
|
39 |
+
hubert,
|
40 |
+
f0,
|
41 |
+
volume,
|
42 |
+
spk_id=spk_id,
|
43 |
+
spk_mix_dict=spk_mix_dict,
|
44 |
+
gt_spec=input_mel,
|
45 |
+
infer=True,
|
46 |
+
infer_speedup=acc,
|
47 |
+
method=method,
|
48 |
+
k_step=k_step,
|
49 |
+
use_tqdm=False)
|
50 |
+
if start_frame > 0:
|
51 |
+
out_mel = out_mel[:, start_frame:, :]
|
52 |
+
f0 = f0[:, start_frame:, :]
|
53 |
+
output = self.vocoder.infer(out_mel, f0)
|
54 |
+
if start_frame > 0:
|
55 |
+
output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0))
|
56 |
+
return output
|
57 |
+
|
58 |
+
def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0,
|
59 |
+
use_silence=False, spk_mix_dict=None):
|
60 |
+
start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
|
61 |
+
if use_silence:
|
62 |
+
audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:]
|
63 |
+
f0 = f0[:, start_frame:, :]
|
64 |
+
hubert = hubert[:, start_frame:, :]
|
65 |
+
volume = volume[:, start_frame:, :]
|
66 |
+
_start_frame = 0
|
67 |
+
else:
|
68 |
+
_start_frame = start_frame
|
69 |
+
audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step,
|
70 |
+
method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame)
|
71 |
+
if use_silence:
|
72 |
+
if start_frame > 0:
|
73 |
+
audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0))
|
74 |
+
return audio
|
diffusion/logger/__init__.py
ADDED
File without changes
|
diffusion/logger/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (134 Bytes). View file
|
|
diffusion/logger/__pycache__/saver.cpython-38.pyc
ADDED
Binary file (4 kB). View file
|
|
diffusion/logger/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (3.8 kB). View file
|
|
diffusion/logger/saver.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
author: wayn391@mastertones
|
3 |
+
'''
|
4 |
+
|
5 |
+
import datetime
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import torch
|
11 |
+
import yaml
|
12 |
+
from torch.utils.tensorboard import SummaryWriter
|
13 |
+
|
14 |
+
|
15 |
+
class Saver(object):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
args,
|
19 |
+
initial_global_step=-1):
|
20 |
+
|
21 |
+
self.expdir = args.env.expdir
|
22 |
+
self.sample_rate = args.data.sampling_rate
|
23 |
+
|
24 |
+
# cold start
|
25 |
+
self.global_step = initial_global_step
|
26 |
+
self.init_time = time.time()
|
27 |
+
self.last_time = time.time()
|
28 |
+
|
29 |
+
# makedirs
|
30 |
+
os.makedirs(self.expdir, exist_ok=True)
|
31 |
+
|
32 |
+
# path
|
33 |
+
self.path_log_info = os.path.join(self.expdir, 'log_info.txt')
|
34 |
+
|
35 |
+
# ckpt
|
36 |
+
os.makedirs(self.expdir, exist_ok=True)
|
37 |
+
|
38 |
+
# writer
|
39 |
+
self.writer = SummaryWriter(os.path.join(self.expdir, 'logs'))
|
40 |
+
|
41 |
+
# save config
|
42 |
+
path_config = os.path.join(self.expdir, 'config.yaml')
|
43 |
+
with open(path_config, "w") as out_config:
|
44 |
+
yaml.dump(dict(args), out_config)
|
45 |
+
|
46 |
+
|
47 |
+
def log_info(self, msg):
|
48 |
+
'''log method'''
|
49 |
+
if isinstance(msg, dict):
|
50 |
+
msg_list = []
|
51 |
+
for k, v in msg.items():
|
52 |
+
tmp_str = ''
|
53 |
+
if isinstance(v, int):
|
54 |
+
tmp_str = '{}: {:,}'.format(k, v)
|
55 |
+
else:
|
56 |
+
tmp_str = '{}: {}'.format(k, v)
|
57 |
+
|
58 |
+
msg_list.append(tmp_str)
|
59 |
+
msg_str = '\n'.join(msg_list)
|
60 |
+
else:
|
61 |
+
msg_str = msg
|
62 |
+
|
63 |
+
# dsplay
|
64 |
+
print(msg_str)
|
65 |
+
|
66 |
+
# save
|
67 |
+
with open(self.path_log_info, 'a') as fp:
|
68 |
+
fp.write(msg_str+'\n')
|
69 |
+
|
70 |
+
def log_value(self, dict):
|
71 |
+
for k, v in dict.items():
|
72 |
+
self.writer.add_scalar(k, v, self.global_step)
|
73 |
+
|
74 |
+
def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5):
|
75 |
+
spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
|
76 |
+
spec = spec_cat[0]
|
77 |
+
if isinstance(spec, torch.Tensor):
|
78 |
+
spec = spec.cpu().numpy()
|
79 |
+
fig = plt.figure(figsize=(12, 9))
|
80 |
+
plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
|
81 |
+
plt.tight_layout()
|
82 |
+
self.writer.add_figure(name, fig, self.global_step)
|
83 |
+
|
84 |
+
def log_audio(self, dict):
|
85 |
+
for k, v in dict.items():
|
86 |
+
self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate)
|
87 |
+
|
88 |
+
def get_interval_time(self, update=True):
|
89 |
+
cur_time = time.time()
|
90 |
+
time_interval = cur_time - self.last_time
|
91 |
+
if update:
|
92 |
+
self.last_time = cur_time
|
93 |
+
return time_interval
|
94 |
+
|
95 |
+
def get_total_time(self, to_str=True):
|
96 |
+
total_time = time.time() - self.init_time
|
97 |
+
if to_str:
|
98 |
+
total_time = str(datetime.timedelta(
|
99 |
+
seconds=total_time))[:-5]
|
100 |
+
return total_time
|
101 |
+
|
102 |
+
def save_model(
|
103 |
+
self,
|
104 |
+
model,
|
105 |
+
optimizer,
|
106 |
+
name='model',
|
107 |
+
postfix='',
|
108 |
+
to_json=False):
|
109 |
+
# path
|
110 |
+
if postfix:
|
111 |
+
postfix = '_' + postfix
|
112 |
+
path_pt = os.path.join(
|
113 |
+
self.expdir , name+postfix+'.pt')
|
114 |
+
|
115 |
+
# check
|
116 |
+
print(' [*] model checkpoint saved: {}'.format(path_pt))
|
117 |
+
|
118 |
+
# save
|
119 |
+
if optimizer is not None:
|
120 |
+
torch.save({
|
121 |
+
'global_step': self.global_step,
|
122 |
+
'model': model.state_dict(),
|
123 |
+
'optimizer': optimizer.state_dict()}, path_pt)
|
124 |
+
else:
|
125 |
+
torch.save({
|
126 |
+
'global_step': self.global_step,
|
127 |
+
'model': model.state_dict()}, path_pt)
|
128 |
+
|
129 |
+
|
130 |
+
def delete_model(self, name='model', postfix=''):
|
131 |
+
# path
|
132 |
+
if postfix:
|
133 |
+
postfix = '_' + postfix
|
134 |
+
path_pt = os.path.join(
|
135 |
+
self.expdir , name+postfix+'.pt')
|
136 |
+
|
137 |
+
# delete
|
138 |
+
if os.path.exists(path_pt):
|
139 |
+
os.remove(path_pt)
|
140 |
+
print(' [*] model checkpoint deleted: {}'.format(path_pt))
|
141 |
+
|
142 |
+
def global_step_increment(self):
|
143 |
+
self.global_step += 1
|
144 |
+
|
145 |
+
|
diffusion/logger/utils.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import yaml
|
6 |
+
|
7 |
+
|
8 |
+
def traverse_dir(
|
9 |
+
root_dir,
|
10 |
+
extensions,
|
11 |
+
amount=None,
|
12 |
+
str_include=None,
|
13 |
+
str_exclude=None,
|
14 |
+
is_pure=False,
|
15 |
+
is_sort=False,
|
16 |
+
is_ext=True):
|
17 |
+
|
18 |
+
file_list = []
|
19 |
+
cnt = 0
|
20 |
+
for root, _, files in os.walk(root_dir):
|
21 |
+
for file in files:
|
22 |
+
if any([file.endswith(f".{ext}") for ext in extensions]):
|
23 |
+
# path
|
24 |
+
mix_path = os.path.join(root, file)
|
25 |
+
pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
|
26 |
+
|
27 |
+
# amount
|
28 |
+
if (amount is not None) and (cnt == amount):
|
29 |
+
if is_sort:
|
30 |
+
file_list.sort()
|
31 |
+
return file_list
|
32 |
+
|
33 |
+
# check string
|
34 |
+
if (str_include is not None) and (str_include not in pure_path):
|
35 |
+
continue
|
36 |
+
if (str_exclude is not None) and (str_exclude in pure_path):
|
37 |
+
continue
|
38 |
+
|
39 |
+
if not is_ext:
|
40 |
+
ext = pure_path.split('.')[-1]
|
41 |
+
pure_path = pure_path[:-(len(ext)+1)]
|
42 |
+
file_list.append(pure_path)
|
43 |
+
cnt += 1
|
44 |
+
if is_sort:
|
45 |
+
file_list.sort()
|
46 |
+
return file_list
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
class DotDict(dict):
|
51 |
+
def __getattr__(*args):
|
52 |
+
val = dict.get(*args)
|
53 |
+
return DotDict(val) if type(val) is dict else val
|
54 |
+
|
55 |
+
__setattr__ = dict.__setitem__
|
56 |
+
__delattr__ = dict.__delitem__
|
57 |
+
|
58 |
+
|
59 |
+
def get_network_paras_amount(model_dict):
|
60 |
+
info = dict()
|
61 |
+
for model_name, model in model_dict.items():
|
62 |
+
# all_params = sum(p.numel() for p in model.parameters())
|
63 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
64 |
+
|
65 |
+
info[model_name] = trainable_params
|
66 |
+
return info
|
67 |
+
|
68 |
+
|
69 |
+
def load_config(path_config):
|
70 |
+
with open(path_config, "r") as config:
|
71 |
+
args = yaml.safe_load(config)
|
72 |
+
args = DotDict(args)
|
73 |
+
# print(args)
|
74 |
+
return args
|
75 |
+
|
76 |
+
def save_config(path_config,config):
|
77 |
+
config = dict(config)
|
78 |
+
with open(path_config, "w") as f:
|
79 |
+
yaml.dump(config, f)
|
80 |
+
|
81 |
+
def to_json(path_params, path_json):
|
82 |
+
params = torch.load(path_params, map_location=torch.device('cpu'))
|
83 |
+
raw_state_dict = {}
|
84 |
+
for k, v in params.items():
|
85 |
+
val = v.flatten().numpy().tolist()
|
86 |
+
raw_state_dict[k] = val
|
87 |
+
|
88 |
+
with open(path_json, 'w') as outfile:
|
89 |
+
json.dump(raw_state_dict, outfile,indent= "\t")
|
90 |
+
|
91 |
+
|
92 |
+
def convert_tensor_to_numpy(tensor, is_squeeze=True):
|
93 |
+
if is_squeeze:
|
94 |
+
tensor = tensor.squeeze()
|
95 |
+
if tensor.requires_grad:
|
96 |
+
tensor = tensor.detach()
|
97 |
+
if tensor.is_cuda:
|
98 |
+
tensor = tensor.cpu()
|
99 |
+
return tensor.numpy()
|
100 |
+
|
101 |
+
|
102 |
+
def load_model(
|
103 |
+
expdir,
|
104 |
+
model,
|
105 |
+
optimizer,
|
106 |
+
name='model',
|
107 |
+
postfix='',
|
108 |
+
device='cpu'):
|
109 |
+
if postfix == '':
|
110 |
+
postfix = '_' + postfix
|
111 |
+
path = os.path.join(expdir, name+postfix)
|
112 |
+
path_pt = traverse_dir(expdir, ['pt'], is_ext=False)
|
113 |
+
global_step = 0
|
114 |
+
if len(path_pt) > 0:
|
115 |
+
steps = [s[len(path):] for s in path_pt]
|
116 |
+
maxstep = max([int(s) if s.isdigit() else 0 for s in steps])
|
117 |
+
if maxstep >= 0:
|
118 |
+
path_pt = path+str(maxstep)+'.pt'
|
119 |
+
else:
|
120 |
+
path_pt = path+'best.pt'
|
121 |
+
print(' [*] restoring model from', path_pt)
|
122 |
+
ckpt = torch.load(path_pt, map_location=torch.device(device))
|
123 |
+
global_step = ckpt['global_step']
|
124 |
+
model.load_state_dict(ckpt['model'], strict=False)
|
125 |
+
if ckpt.get("optimizer") is not None:
|
126 |
+
optimizer.load_state_dict(ckpt['optimizer'])
|
127 |
+
return global_step, model, optimizer
|
diffusion/onnx_export.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import yaml
|
8 |
+
from diffusion_onnx import GaussianDiffusion
|
9 |
+
|
10 |
+
|
11 |
+
class DotDict(dict):
|
12 |
+
def __getattr__(*args):
|
13 |
+
val = dict.get(*args)
|
14 |
+
return DotDict(val) if type(val) is dict else val
|
15 |
+
|
16 |
+
__setattr__ = dict.__setitem__
|
17 |
+
__delattr__ = dict.__delitem__
|
18 |
+
|
19 |
+
|
20 |
+
def load_model_vocoder(
|
21 |
+
model_path,
|
22 |
+
device='cpu'):
|
23 |
+
config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
|
24 |
+
with open(config_file, "r") as config:
|
25 |
+
args = yaml.safe_load(config)
|
26 |
+
args = DotDict(args)
|
27 |
+
|
28 |
+
# load model
|
29 |
+
model = Unit2Mel(
|
30 |
+
args.data.encoder_out_channels,
|
31 |
+
args.model.n_spk,
|
32 |
+
args.model.use_pitch_aug,
|
33 |
+
128,
|
34 |
+
args.model.n_layers,
|
35 |
+
args.model.n_chans,
|
36 |
+
args.model.n_hidden,
|
37 |
+
args.model.timesteps,
|
38 |
+
args.model.k_step_max)
|
39 |
+
|
40 |
+
print(' [Loading] ' + model_path)
|
41 |
+
ckpt = torch.load(model_path, map_location=torch.device(device))
|
42 |
+
model.to(device)
|
43 |
+
model.load_state_dict(ckpt['model'])
|
44 |
+
model.eval()
|
45 |
+
return model, args
|
46 |
+
|
47 |
+
|
48 |
+
class Unit2Mel(nn.Module):
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
input_channel,
|
52 |
+
n_spk,
|
53 |
+
use_pitch_aug=False,
|
54 |
+
out_dims=128,
|
55 |
+
n_layers=20,
|
56 |
+
n_chans=384,
|
57 |
+
n_hidden=256,
|
58 |
+
timesteps=1000,
|
59 |
+
k_step_max=1000):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
self.unit_embed = nn.Linear(input_channel, n_hidden)
|
63 |
+
self.f0_embed = nn.Linear(1, n_hidden)
|
64 |
+
self.volume_embed = nn.Linear(1, n_hidden)
|
65 |
+
if use_pitch_aug:
|
66 |
+
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
|
67 |
+
else:
|
68 |
+
self.aug_shift_embed = None
|
69 |
+
self.n_spk = n_spk
|
70 |
+
if n_spk is not None and n_spk > 1:
|
71 |
+
self.spk_embed = nn.Embedding(n_spk, n_hidden)
|
72 |
+
|
73 |
+
self.timesteps = timesteps if timesteps is not None else 1000
|
74 |
+
self.k_step_max = k_step_max if k_step_max is not None and k_step_max>0 and k_step_max<self.timesteps else self.timesteps
|
75 |
+
|
76 |
+
|
77 |
+
# diffusion
|
78 |
+
self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden,self.timesteps,self.k_step_max)
|
79 |
+
self.hidden_size = n_hidden
|
80 |
+
self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
def forward(self, units, mel2ph, f0, volume, g = None):
|
85 |
+
|
86 |
+
'''
|
87 |
+
input:
|
88 |
+
B x n_frames x n_unit
|
89 |
+
return:
|
90 |
+
dict of B x n_frames x feat
|
91 |
+
'''
|
92 |
+
|
93 |
+
decoder_inp = F.pad(units, [0, 0, 1, 0])
|
94 |
+
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
|
95 |
+
units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
|
96 |
+
|
97 |
+
x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
|
98 |
+
|
99 |
+
if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
|
100 |
+
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
|
101 |
+
g = g * self.speaker_map # [N, S, B, 1, H]
|
102 |
+
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
|
103 |
+
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
|
104 |
+
x = x.transpose(1, 2) + g
|
105 |
+
return x
|
106 |
+
else:
|
107 |
+
return x.transpose(1, 2)
|
108 |
+
|
109 |
+
|
110 |
+
def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
|
111 |
+
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
|
112 |
+
|
113 |
+
'''
|
114 |
+
input:
|
115 |
+
B x n_frames x n_unit
|
116 |
+
return:
|
117 |
+
dict of B x n_frames x feat
|
118 |
+
'''
|
119 |
+
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
|
120 |
+
if self.n_spk is not None and self.n_spk > 1:
|
121 |
+
if spk_mix_dict is not None:
|
122 |
+
spk_embed_mix = torch.zeros((1,1,self.hidden_size))
|
123 |
+
for k, v in spk_mix_dict.items():
|
124 |
+
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
|
125 |
+
spk_embeddd = self.spk_embed(spk_id_torch)
|
126 |
+
self.speaker_map[k] = spk_embeddd
|
127 |
+
spk_embed_mix = spk_embed_mix + v * spk_embeddd
|
128 |
+
x = x + spk_embed_mix
|
129 |
+
else:
|
130 |
+
x = x + self.spk_embed(spk_id - 1)
|
131 |
+
self.speaker_map = self.speaker_map.unsqueeze(0)
|
132 |
+
self.speaker_map = self.speaker_map.detach()
|
133 |
+
return x.transpose(1, 2)
|
134 |
+
|
135 |
+
def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
|
136 |
+
hubert_hidden_size = 768
|
137 |
+
n_frames = 100
|
138 |
+
hubert = torch.randn((1, n_frames, hubert_hidden_size))
|
139 |
+
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
|
140 |
+
f0 = torch.randn((1, n_frames))
|
141 |
+
volume = torch.randn((1, n_frames))
|
142 |
+
spk_mix = []
|
143 |
+
spks = {}
|
144 |
+
if self.n_spk is not None and self.n_spk > 1:
|
145 |
+
for i in range(self.n_spk):
|
146 |
+
spk_mix.append(1.0/float(self.n_spk))
|
147 |
+
spks.update({i:1.0/float(self.n_spk)})
|
148 |
+
spk_mix = torch.tensor(spk_mix)
|
149 |
+
spk_mix = spk_mix.repeat(n_frames, 1)
|
150 |
+
self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
|
151 |
+
self.forward(hubert, mel2ph, f0, volume, spk_mix)
|
152 |
+
if export_encoder:
|
153 |
+
torch.onnx.export(
|
154 |
+
self,
|
155 |
+
(hubert, mel2ph, f0, volume, spk_mix),
|
156 |
+
f"{project_name}_encoder.onnx",
|
157 |
+
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
|
158 |
+
output_names=["mel_pred"],
|
159 |
+
dynamic_axes={
|
160 |
+
"hubert": [1],
|
161 |
+
"f0": [1],
|
162 |
+
"volume": [1],
|
163 |
+
"mel2ph": [1],
|
164 |
+
"spk_mix": [0],
|
165 |
+
},
|
166 |
+
opset_version=16
|
167 |
+
)
|
168 |
+
|
169 |
+
self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
|
170 |
+
|
171 |
+
def ExportOnnx(self, project_name=None):
|
172 |
+
hubert_hidden_size = 768
|
173 |
+
n_frames = 100
|
174 |
+
hubert = torch.randn((1, n_frames, hubert_hidden_size))
|
175 |
+
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
|
176 |
+
f0 = torch.randn((1, n_frames))
|
177 |
+
volume = torch.randn((1, n_frames))
|
178 |
+
spk_mix = []
|
179 |
+
spks = {}
|
180 |
+
if self.n_spk is not None and self.n_spk > 1:
|
181 |
+
for i in range(self.n_spk):
|
182 |
+
spk_mix.append(1.0/float(self.n_spk))
|
183 |
+
spks.update({i:1.0/float(self.n_spk)})
|
184 |
+
spk_mix = torch.tensor(spk_mix)
|
185 |
+
self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
|
186 |
+
self.forward(hubert, mel2ph, f0, volume, spk_mix)
|
187 |
+
|
188 |
+
torch.onnx.export(
|
189 |
+
self,
|
190 |
+
(hubert, mel2ph, f0, volume, spk_mix),
|
191 |
+
f"{project_name}_encoder.onnx",
|
192 |
+
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
|
193 |
+
output_names=["mel_pred"],
|
194 |
+
dynamic_axes={
|
195 |
+
"hubert": [1],
|
196 |
+
"f0": [1],
|
197 |
+
"volume": [1],
|
198 |
+
"mel2ph": [1]
|
199 |
+
},
|
200 |
+
opset_version=16
|
201 |
+
)
|
202 |
+
|
203 |
+
condition = torch.randn(1,self.decoder.n_hidden,n_frames)
|
204 |
+
noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
|
205 |
+
pndm_speedup = torch.LongTensor([100])
|
206 |
+
K_steps = torch.LongTensor([1000])
|
207 |
+
self.decoder = torch.jit.script(self.decoder)
|
208 |
+
self.decoder(condition, noise, pndm_speedup, K_steps)
|
209 |
+
|
210 |
+
torch.onnx.export(
|
211 |
+
self.decoder,
|
212 |
+
(condition, noise, pndm_speedup, K_steps),
|
213 |
+
f"{project_name}_diffusion.onnx",
|
214 |
+
input_names=["condition", "noise", "pndm_speedup", "K_steps"],
|
215 |
+
output_names=["mel"],
|
216 |
+
dynamic_axes={
|
217 |
+
"condition": [2],
|
218 |
+
"noise": [3],
|
219 |
+
},
|
220 |
+
opset_version=16
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
if __name__ == "__main__":
|
225 |
+
project_name = "dddsp"
|
226 |
+
model_path = f'{project_name}/model_500000.pt'
|
227 |
+
|
228 |
+
model, _ = load_model_vocoder(model_path)
|
229 |
+
|
230 |
+
# 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
|
231 |
+
model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)
|
232 |
+
|
233 |
+
# 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可)
|
234 |
+
# model.ExportOnnx(project_name)
|
235 |
+
|
diffusion/solver.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch import autocast
|
7 |
+
from torch.cuda.amp import GradScaler
|
8 |
+
|
9 |
+
from diffusion.logger import utils
|
10 |
+
from diffusion.logger.saver import Saver
|
11 |
+
|
12 |
+
|
13 |
+
def test(args, model, vocoder, loader_test, saver):
|
14 |
+
print(' [*] testing...')
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
# losses
|
18 |
+
test_loss = 0.
|
19 |
+
|
20 |
+
# intialization
|
21 |
+
num_batches = len(loader_test)
|
22 |
+
rtf_all = []
|
23 |
+
|
24 |
+
# run
|
25 |
+
with torch.no_grad():
|
26 |
+
for bidx, data in enumerate(loader_test):
|
27 |
+
fn = data['name'][0].split("/")[-1]
|
28 |
+
speaker = data['name'][0].split("/")[-2]
|
29 |
+
print('--------')
|
30 |
+
print('{}/{} - {}'.format(bidx, num_batches, fn))
|
31 |
+
|
32 |
+
# unpack data
|
33 |
+
for k in data.keys():
|
34 |
+
if not k.startswith('name'):
|
35 |
+
data[k] = data[k].to(args.device)
|
36 |
+
print('>>', data['name'][0])
|
37 |
+
|
38 |
+
# forward
|
39 |
+
st_time = time.time()
|
40 |
+
mel = model(
|
41 |
+
data['units'],
|
42 |
+
data['f0'],
|
43 |
+
data['volume'],
|
44 |
+
data['spk_id'],
|
45 |
+
gt_spec=None if model.k_step_max == model.timesteps else data['mel'],
|
46 |
+
infer=True,
|
47 |
+
infer_speedup=args.infer.speedup,
|
48 |
+
method=args.infer.method,
|
49 |
+
k_step=model.k_step_max
|
50 |
+
)
|
51 |
+
signal = vocoder.infer(mel, data['f0'])
|
52 |
+
ed_time = time.time()
|
53 |
+
|
54 |
+
# RTF
|
55 |
+
run_time = ed_time - st_time
|
56 |
+
song_time = signal.shape[-1] / args.data.sampling_rate
|
57 |
+
rtf = run_time / song_time
|
58 |
+
print('RTF: {} | {} / {}'.format(rtf, run_time, song_time))
|
59 |
+
rtf_all.append(rtf)
|
60 |
+
|
61 |
+
# loss
|
62 |
+
for i in range(args.train.batch_size):
|
63 |
+
loss = model(
|
64 |
+
data['units'],
|
65 |
+
data['f0'],
|
66 |
+
data['volume'],
|
67 |
+
data['spk_id'],
|
68 |
+
gt_spec=data['mel'],
|
69 |
+
infer=False,
|
70 |
+
k_step=model.k_step_max)
|
71 |
+
test_loss += loss.item()
|
72 |
+
|
73 |
+
# log mel
|
74 |
+
saver.log_spec(f"{speaker}_{fn}.wav", data['mel'], mel)
|
75 |
+
|
76 |
+
# log audi
|
77 |
+
path_audio = data['name_ext'][0]
|
78 |
+
audio, sr = librosa.load(path_audio, sr=args.data.sampling_rate)
|
79 |
+
if len(audio.shape) > 1:
|
80 |
+
audio = librosa.to_mono(audio)
|
81 |
+
audio = torch.from_numpy(audio).unsqueeze(0).to(signal)
|
82 |
+
saver.log_audio({f"{speaker}_{fn}_gt.wav": audio,f"{speaker}_{fn}_pred.wav": signal})
|
83 |
+
# report
|
84 |
+
test_loss /= args.train.batch_size
|
85 |
+
test_loss /= num_batches
|
86 |
+
|
87 |
+
# check
|
88 |
+
print(' [test_loss] test_loss:', test_loss)
|
89 |
+
print(' Real Time Factor', np.mean(rtf_all))
|
90 |
+
return test_loss
|
91 |
+
|
92 |
+
|
93 |
+
def train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_test):
|
94 |
+
# saver
|
95 |
+
saver = Saver(args, initial_global_step=initial_global_step)
|
96 |
+
|
97 |
+
# model size
|
98 |
+
params_count = utils.get_network_paras_amount({'model': model})
|
99 |
+
saver.log_info('--- model size ---')
|
100 |
+
saver.log_info(params_count)
|
101 |
+
|
102 |
+
# run
|
103 |
+
num_batches = len(loader_train)
|
104 |
+
model.train()
|
105 |
+
saver.log_info('======= start training =======')
|
106 |
+
scaler = GradScaler()
|
107 |
+
if args.train.amp_dtype == 'fp32':
|
108 |
+
dtype = torch.float32
|
109 |
+
elif args.train.amp_dtype == 'fp16':
|
110 |
+
dtype = torch.float16
|
111 |
+
elif args.train.amp_dtype == 'bf16':
|
112 |
+
dtype = torch.bfloat16
|
113 |
+
else:
|
114 |
+
raise ValueError(' [x] Unknown amp_dtype: ' + args.train.amp_dtype)
|
115 |
+
saver.log_info("epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step")
|
116 |
+
for epoch in range(args.train.epochs):
|
117 |
+
for batch_idx, data in enumerate(loader_train):
|
118 |
+
saver.global_step_increment()
|
119 |
+
optimizer.zero_grad()
|
120 |
+
|
121 |
+
# unpack data
|
122 |
+
for k in data.keys():
|
123 |
+
if not k.startswith('name'):
|
124 |
+
data[k] = data[k].to(args.device)
|
125 |
+
|
126 |
+
# forward
|
127 |
+
if dtype == torch.float32:
|
128 |
+
loss = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'],
|
129 |
+
aug_shift = data['aug_shift'], gt_spec=data['mel'].float(), infer=False, k_step=model.k_step_max)
|
130 |
+
else:
|
131 |
+
with autocast(device_type=args.device, dtype=dtype):
|
132 |
+
loss = model(data['units'], data['f0'], data['volume'], data['spk_id'],
|
133 |
+
aug_shift = data['aug_shift'], gt_spec=data['mel'], infer=False, k_step=model.k_step_max)
|
134 |
+
|
135 |
+
# handle nan loss
|
136 |
+
if torch.isnan(loss):
|
137 |
+
raise ValueError(' [x] nan loss ')
|
138 |
+
else:
|
139 |
+
# backpropagate
|
140 |
+
if dtype == torch.float32:
|
141 |
+
loss.backward()
|
142 |
+
optimizer.step()
|
143 |
+
else:
|
144 |
+
scaler.scale(loss).backward()
|
145 |
+
scaler.step(optimizer)
|
146 |
+
scaler.update()
|
147 |
+
scheduler.step()
|
148 |
+
|
149 |
+
# log loss
|
150 |
+
if saver.global_step % args.train.interval_log == 0:
|
151 |
+
current_lr = optimizer.param_groups[0]['lr']
|
152 |
+
saver.log_info(
|
153 |
+
'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | lr: {:.6} | loss: {:.3f} | time: {} | step: {}'.format(
|
154 |
+
epoch,
|
155 |
+
batch_idx,
|
156 |
+
num_batches,
|
157 |
+
args.env.expdir,
|
158 |
+
args.train.interval_log/saver.get_interval_time(),
|
159 |
+
current_lr,
|
160 |
+
loss.item(),
|
161 |
+
saver.get_total_time(),
|
162 |
+
saver.global_step
|
163 |
+
)
|
164 |
+
)
|
165 |
+
|
166 |
+
saver.log_value({
|
167 |
+
'train/loss': loss.item()
|
168 |
+
})
|
169 |
+
|
170 |
+
saver.log_value({
|
171 |
+
'train/lr': current_lr
|
172 |
+
})
|
173 |
+
|
174 |
+
# validation
|
175 |
+
if saver.global_step % args.train.interval_val == 0:
|
176 |
+
optimizer_save = optimizer if args.train.save_opt else None
|
177 |
+
|
178 |
+
# save latest
|
179 |
+
saver.save_model(model, optimizer_save, postfix=f'{saver.global_step}')
|
180 |
+
last_val_step = saver.global_step - args.train.interval_val
|
181 |
+
if last_val_step % args.train.interval_force_save != 0:
|
182 |
+
saver.delete_model(postfix=f'{last_val_step}')
|
183 |
+
|
184 |
+
# run testing set
|
185 |
+
test_loss = test(args, model, vocoder, loader_test, saver)
|
186 |
+
|
187 |
+
# log loss
|
188 |
+
saver.log_info(
|
189 |
+
' --- <validation> --- \nloss: {:.3f}. '.format(
|
190 |
+
test_loss,
|
191 |
+
)
|
192 |
+
)
|
193 |
+
|
194 |
+
saver.log_value({
|
195 |
+
'validation/loss': test_loss
|
196 |
+
})
|
197 |
+
|
198 |
+
model.train()
|
199 |
+
|
200 |
+
|
diffusion/uni_pc.py
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
class NoiseScheduleVP:
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
schedule='discrete',
|
10 |
+
betas=None,
|
11 |
+
alphas_cumprod=None,
|
12 |
+
continuous_beta_0=0.1,
|
13 |
+
continuous_beta_1=20.,
|
14 |
+
dtype=torch.float32,
|
15 |
+
):
|
16 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
17 |
+
***
|
18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
+
***
|
21 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
22 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
23 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
24 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
25 |
+
sigma_t = self.marginal_std(t)
|
26 |
+
lambda_t = self.marginal_lambda(t)
|
27 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
28 |
+
t = self.inverse_lambda(lambda_t)
|
29 |
+
===============================================================
|
30 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
31 |
+
1. For discrete-time DPMs:
|
32 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
33 |
+
t_i = (i + 1) / N
|
34 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
35 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
36 |
+
Args:
|
37 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
38 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
39 |
+
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
40 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
41 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
42 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
43 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
44 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
45 |
+
and
|
46 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
47 |
+
2. For continuous-time DPMs:
|
48 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
49 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
50 |
+
Args:
|
51 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
52 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
53 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
54 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
55 |
+
T: A `float` number. The ending time of the forward process.
|
56 |
+
===============================================================
|
57 |
+
Args:
|
58 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
59 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
60 |
+
Returns:
|
61 |
+
A wrapper object of the forward SDE (VP type).
|
62 |
+
|
63 |
+
===============================================================
|
64 |
+
Example:
|
65 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
66 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
67 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
68 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
69 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
70 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
71 |
+
"""
|
72 |
+
|
73 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
74 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
75 |
+
|
76 |
+
self.schedule = schedule
|
77 |
+
if schedule == 'discrete':
|
78 |
+
if betas is not None:
|
79 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
80 |
+
else:
|
81 |
+
assert alphas_cumprod is not None
|
82 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
83 |
+
self.total_N = len(log_alphas)
|
84 |
+
self.T = 1.
|
85 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
|
86 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,)).to(dtype=dtype)
|
87 |
+
else:
|
88 |
+
self.total_N = 1000
|
89 |
+
self.beta_0 = continuous_beta_0
|
90 |
+
self.beta_1 = continuous_beta_1
|
91 |
+
self.cosine_s = 0.008
|
92 |
+
self.cosine_beta_max = 999.
|
93 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
94 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
95 |
+
self.schedule = schedule
|
96 |
+
if schedule == 'cosine':
|
97 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
98 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
99 |
+
self.T = 0.9946
|
100 |
+
else:
|
101 |
+
self.T = 1.
|
102 |
+
|
103 |
+
def marginal_log_mean_coeff(self, t):
|
104 |
+
"""
|
105 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
106 |
+
"""
|
107 |
+
if self.schedule == 'discrete':
|
108 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
109 |
+
elif self.schedule == 'linear':
|
110 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
111 |
+
elif self.schedule == 'cosine':
|
112 |
+
def log_alpha_fn(s):
|
113 |
+
return torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0))
|
114 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
115 |
+
return log_alpha_t
|
116 |
+
|
117 |
+
def marginal_alpha(self, t):
|
118 |
+
"""
|
119 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
120 |
+
"""
|
121 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
122 |
+
|
123 |
+
def marginal_std(self, t):
|
124 |
+
"""
|
125 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
126 |
+
"""
|
127 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
128 |
+
|
129 |
+
def marginal_lambda(self, t):
|
130 |
+
"""
|
131 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
132 |
+
"""
|
133 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
134 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
135 |
+
return log_mean_coeff - log_std
|
136 |
+
|
137 |
+
def inverse_lambda(self, lamb):
|
138 |
+
"""
|
139 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
140 |
+
"""
|
141 |
+
if self.schedule == 'linear':
|
142 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
143 |
+
Delta = self.beta_0**2 + tmp
|
144 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
145 |
+
elif self.schedule == 'discrete':
|
146 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
147 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
148 |
+
return t.reshape((-1,))
|
149 |
+
else:
|
150 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
151 |
+
def t_fn(log_alpha_t):
|
152 |
+
return torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2.0 * (1.0 + self.cosine_s) / math.pi - self.cosine_s
|
153 |
+
t = t_fn(log_alpha)
|
154 |
+
return t
|
155 |
+
|
156 |
+
|
157 |
+
def model_wrapper(
|
158 |
+
model,
|
159 |
+
noise_schedule,
|
160 |
+
model_type="noise",
|
161 |
+
model_kwargs={},
|
162 |
+
guidance_type="uncond",
|
163 |
+
condition=None,
|
164 |
+
unconditional_condition=None,
|
165 |
+
guidance_scale=1.,
|
166 |
+
classifier_fn=None,
|
167 |
+
classifier_kwargs={},
|
168 |
+
):
|
169 |
+
"""Create a wrapper function for the noise prediction model.
|
170 |
+
"""
|
171 |
+
|
172 |
+
def get_model_input_time(t_continuous):
|
173 |
+
"""
|
174 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
175 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
176 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
177 |
+
"""
|
178 |
+
if noise_schedule.schedule == 'discrete':
|
179 |
+
return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
|
180 |
+
else:
|
181 |
+
return t_continuous
|
182 |
+
|
183 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
184 |
+
t_input = get_model_input_time(t_continuous)
|
185 |
+
if cond is None:
|
186 |
+
output = model(x, t_input, **model_kwargs)
|
187 |
+
else:
|
188 |
+
output = model(x, t_input, cond, **model_kwargs)
|
189 |
+
if model_type == "noise":
|
190 |
+
return output
|
191 |
+
elif model_type == "x_start":
|
192 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
193 |
+
return (x - alpha_t * output) / sigma_t
|
194 |
+
elif model_type == "v":
|
195 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
196 |
+
return alpha_t * output + sigma_t * x
|
197 |
+
elif model_type == "score":
|
198 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
199 |
+
return -sigma_t * output
|
200 |
+
|
201 |
+
def cond_grad_fn(x, t_input):
|
202 |
+
"""
|
203 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
204 |
+
"""
|
205 |
+
with torch.enable_grad():
|
206 |
+
x_in = x.detach().requires_grad_(True)
|
207 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
208 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
209 |
+
|
210 |
+
def model_fn(x, t_continuous):
|
211 |
+
"""
|
212 |
+
The noise predicition model function that is used for DPM-Solver.
|
213 |
+
"""
|
214 |
+
if guidance_type == "uncond":
|
215 |
+
return noise_pred_fn(x, t_continuous)
|
216 |
+
elif guidance_type == "classifier":
|
217 |
+
assert classifier_fn is not None
|
218 |
+
t_input = get_model_input_time(t_continuous)
|
219 |
+
cond_grad = cond_grad_fn(x, t_input)
|
220 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
221 |
+
noise = noise_pred_fn(x, t_continuous)
|
222 |
+
return noise - guidance_scale * sigma_t * cond_grad
|
223 |
+
elif guidance_type == "classifier-free":
|
224 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
225 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
226 |
+
else:
|
227 |
+
x_in = torch.cat([x] * 2)
|
228 |
+
t_in = torch.cat([t_continuous] * 2)
|
229 |
+
c_in = torch.cat([unconditional_condition, condition])
|
230 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
231 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
232 |
+
|
233 |
+
assert model_type in ["noise", "x_start", "v"]
|
234 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
235 |
+
return model_fn
|
236 |
+
|
237 |
+
|
238 |
+
class UniPC:
|
239 |
+
def __init__(
|
240 |
+
self,
|
241 |
+
model_fn,
|
242 |
+
noise_schedule,
|
243 |
+
algorithm_type="data_prediction",
|
244 |
+
correcting_x0_fn=None,
|
245 |
+
correcting_xt_fn=None,
|
246 |
+
thresholding_max_val=1.,
|
247 |
+
dynamic_thresholding_ratio=0.995,
|
248 |
+
variant='bh1'
|
249 |
+
):
|
250 |
+
"""Construct a UniPC.
|
251 |
+
|
252 |
+
We support both data_prediction and noise_prediction.
|
253 |
+
"""
|
254 |
+
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
|
255 |
+
self.noise_schedule = noise_schedule
|
256 |
+
assert algorithm_type in ["data_prediction", "noise_prediction"]
|
257 |
+
|
258 |
+
if correcting_x0_fn == "dynamic_thresholding":
|
259 |
+
self.correcting_x0_fn = self.dynamic_thresholding_fn
|
260 |
+
else:
|
261 |
+
self.correcting_x0_fn = correcting_x0_fn
|
262 |
+
|
263 |
+
self.correcting_xt_fn = correcting_xt_fn
|
264 |
+
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
|
265 |
+
self.thresholding_max_val = thresholding_max_val
|
266 |
+
|
267 |
+
self.variant = variant
|
268 |
+
self.predict_x0 = algorithm_type == "data_prediction"
|
269 |
+
|
270 |
+
def dynamic_thresholding_fn(self, x0, t=None):
|
271 |
+
"""
|
272 |
+
The dynamic thresholding method.
|
273 |
+
"""
|
274 |
+
dims = x0.dim()
|
275 |
+
p = self.dynamic_thresholding_ratio
|
276 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
277 |
+
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
278 |
+
x0 = torch.clamp(x0, -s, s) / s
|
279 |
+
return x0
|
280 |
+
|
281 |
+
def noise_prediction_fn(self, x, t):
|
282 |
+
"""
|
283 |
+
Return the noise prediction model.
|
284 |
+
"""
|
285 |
+
return self.model(x, t)
|
286 |
+
|
287 |
+
def data_prediction_fn(self, x, t):
|
288 |
+
"""
|
289 |
+
Return the data prediction model (with corrector).
|
290 |
+
"""
|
291 |
+
noise = self.noise_prediction_fn(x, t)
|
292 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
293 |
+
x0 = (x - sigma_t * noise) / alpha_t
|
294 |
+
if self.correcting_x0_fn is not None:
|
295 |
+
x0 = self.correcting_x0_fn(x0)
|
296 |
+
return x0
|
297 |
+
|
298 |
+
def model_fn(self, x, t):
|
299 |
+
"""
|
300 |
+
Convert the model to the noise prediction model or the data prediction model.
|
301 |
+
"""
|
302 |
+
if self.predict_x0:
|
303 |
+
return self.data_prediction_fn(x, t)
|
304 |
+
else:
|
305 |
+
return self.noise_prediction_fn(x, t)
|
306 |
+
|
307 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
308 |
+
"""Compute the intermediate time steps for sampling.
|
309 |
+
"""
|
310 |
+
if skip_type == 'logSNR':
|
311 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
312 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
313 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
314 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
315 |
+
elif skip_type == 'time_uniform':
|
316 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
317 |
+
elif skip_type == 'time_quadratic':
|
318 |
+
t_order = 2
|
319 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
320 |
+
return t
|
321 |
+
else:
|
322 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
323 |
+
|
324 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
325 |
+
"""
|
326 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
327 |
+
"""
|
328 |
+
if order == 3:
|
329 |
+
K = steps // 3 + 1
|
330 |
+
if steps % 3 == 0:
|
331 |
+
orders = [3,] * (K - 2) + [2, 1]
|
332 |
+
elif steps % 3 == 1:
|
333 |
+
orders = [3,] * (K - 1) + [1]
|
334 |
+
else:
|
335 |
+
orders = [3,] * (K - 1) + [2]
|
336 |
+
elif order == 2:
|
337 |
+
if steps % 2 == 0:
|
338 |
+
K = steps // 2
|
339 |
+
orders = [2,] * K
|
340 |
+
else:
|
341 |
+
K = steps // 2 + 1
|
342 |
+
orders = [2,] * (K - 1) + [1]
|
343 |
+
elif order == 1:
|
344 |
+
K = steps
|
345 |
+
orders = [1,] * steps
|
346 |
+
else:
|
347 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
348 |
+
if skip_type == 'logSNR':
|
349 |
+
# To reproduce the results in DPM-Solver paper
|
350 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
351 |
+
else:
|
352 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
353 |
+
return timesteps_outer, orders
|
354 |
+
|
355 |
+
def denoise_to_zero_fn(self, x, s):
|
356 |
+
"""
|
357 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
358 |
+
"""
|
359 |
+
return self.data_prediction_fn(x, s)
|
360 |
+
|
361 |
+
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
|
362 |
+
if len(t.shape) == 0:
|
363 |
+
t = t.view(-1)
|
364 |
+
if 'bh' in self.variant:
|
365 |
+
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
366 |
+
else:
|
367 |
+
assert self.variant == 'vary_coeff'
|
368 |
+
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
369 |
+
|
370 |
+
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
371 |
+
#print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
372 |
+
ns = self.noise_schedule
|
373 |
+
assert order <= len(model_prev_list)
|
374 |
+
|
375 |
+
# first compute rks
|
376 |
+
t_prev_0 = t_prev_list[-1]
|
377 |
+
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
378 |
+
lambda_t = ns.marginal_lambda(t)
|
379 |
+
model_prev_0 = model_prev_list[-1]
|
380 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
381 |
+
log_alpha_t = ns.marginal_log_mean_coeff(t)
|
382 |
+
alpha_t = torch.exp(log_alpha_t)
|
383 |
+
|
384 |
+
h = lambda_t - lambda_prev_0
|
385 |
+
|
386 |
+
rks = []
|
387 |
+
D1s = []
|
388 |
+
for i in range(1, order):
|
389 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
390 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
391 |
+
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
392 |
+
rk = (lambda_prev_i - lambda_prev_0) / h
|
393 |
+
rks.append(rk)
|
394 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
395 |
+
|
396 |
+
rks.append(1.)
|
397 |
+
rks = torch.tensor(rks, device=x.device)
|
398 |
+
|
399 |
+
K = len(rks)
|
400 |
+
# build C matrix
|
401 |
+
C = []
|
402 |
+
|
403 |
+
col = torch.ones_like(rks)
|
404 |
+
for k in range(1, K + 1):
|
405 |
+
C.append(col)
|
406 |
+
col = col * rks / (k + 1)
|
407 |
+
C = torch.stack(C, dim=1)
|
408 |
+
|
409 |
+
if len(D1s) > 0:
|
410 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
411 |
+
C_inv_p = torch.linalg.inv(C[:-1, :-1])
|
412 |
+
A_p = C_inv_p
|
413 |
+
|
414 |
+
if use_corrector:
|
415 |
+
#print('using corrector')
|
416 |
+
C_inv = torch.linalg.inv(C)
|
417 |
+
A_c = C_inv
|
418 |
+
|
419 |
+
hh = -h if self.predict_x0 else h
|
420 |
+
h_phi_1 = torch.expm1(hh)
|
421 |
+
h_phi_ks = []
|
422 |
+
factorial_k = 1
|
423 |
+
h_phi_k = h_phi_1
|
424 |
+
for k in range(1, K + 2):
|
425 |
+
h_phi_ks.append(h_phi_k)
|
426 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_k
|
427 |
+
factorial_k *= (k + 1)
|
428 |
+
|
429 |
+
model_t = None
|
430 |
+
if self.predict_x0:
|
431 |
+
x_t_ = (
|
432 |
+
sigma_t / sigma_prev_0 * x
|
433 |
+
- alpha_t * h_phi_1 * model_prev_0
|
434 |
+
)
|
435 |
+
# now predictor
|
436 |
+
x_t = x_t_
|
437 |
+
if len(D1s) > 0:
|
438 |
+
# compute the residuals for predictor
|
439 |
+
for k in range(K - 1):
|
440 |
+
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
441 |
+
# now corrector
|
442 |
+
if use_corrector:
|
443 |
+
model_t = self.model_fn(x_t, t)
|
444 |
+
D1_t = (model_t - model_prev_0)
|
445 |
+
x_t = x_t_
|
446 |
+
k = 0
|
447 |
+
for k in range(K - 1):
|
448 |
+
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
449 |
+
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
450 |
+
else:
|
451 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
452 |
+
x_t_ = (
|
453 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
454 |
+
- (sigma_t * h_phi_1) * model_prev_0
|
455 |
+
)
|
456 |
+
# now predictor
|
457 |
+
x_t = x_t_
|
458 |
+
if len(D1s) > 0:
|
459 |
+
# compute the residuals for predictor
|
460 |
+
for k in range(K - 1):
|
461 |
+
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
462 |
+
# now corrector
|
463 |
+
if use_corrector:
|
464 |
+
model_t = self.model_fn(x_t, t)
|
465 |
+
D1_t = (model_t - model_prev_0)
|
466 |
+
x_t = x_t_
|
467 |
+
k = 0
|
468 |
+
for k in range(K - 1):
|
469 |
+
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
470 |
+
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
471 |
+
return x_t, model_t
|
472 |
+
|
473 |
+
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
|
474 |
+
#print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
|
475 |
+
ns = self.noise_schedule
|
476 |
+
assert order <= len(model_prev_list)
|
477 |
+
|
478 |
+
# first compute rks
|
479 |
+
t_prev_0 = t_prev_list[-1]
|
480 |
+
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
481 |
+
lambda_t = ns.marginal_lambda(t)
|
482 |
+
model_prev_0 = model_prev_list[-1]
|
483 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
484 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
485 |
+
alpha_t = torch.exp(log_alpha_t)
|
486 |
+
|
487 |
+
h = lambda_t - lambda_prev_0
|
488 |
+
|
489 |
+
rks = []
|
490 |
+
D1s = []
|
491 |
+
for i in range(1, order):
|
492 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
493 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
494 |
+
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
495 |
+
rk = (lambda_prev_i - lambda_prev_0) / h
|
496 |
+
rks.append(rk)
|
497 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
498 |
+
|
499 |
+
rks.append(1.)
|
500 |
+
rks = torch.tensor(rks, device=x.device)
|
501 |
+
|
502 |
+
R = []
|
503 |
+
b = []
|
504 |
+
|
505 |
+
hh = -h if self.predict_x0 else h
|
506 |
+
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
507 |
+
h_phi_k = h_phi_1 / hh - 1
|
508 |
+
|
509 |
+
factorial_i = 1
|
510 |
+
|
511 |
+
if self.variant == 'bh1':
|
512 |
+
B_h = hh
|
513 |
+
elif self.variant == 'bh2':
|
514 |
+
B_h = torch.expm1(hh)
|
515 |
+
else:
|
516 |
+
raise NotImplementedError()
|
517 |
+
|
518 |
+
for i in range(1, order + 1):
|
519 |
+
R.append(torch.pow(rks, i - 1))
|
520 |
+
b.append(h_phi_k * factorial_i / B_h)
|
521 |
+
factorial_i *= (i + 1)
|
522 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
523 |
+
|
524 |
+
R = torch.stack(R)
|
525 |
+
b = torch.cat(b)
|
526 |
+
|
527 |
+
# now predictor
|
528 |
+
use_predictor = len(D1s) > 0 and x_t is None
|
529 |
+
if len(D1s) > 0:
|
530 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
531 |
+
if x_t is None:
|
532 |
+
# for order 2, we use a simplified version
|
533 |
+
if order == 2:
|
534 |
+
rhos_p = torch.tensor([0.5], device=b.device)
|
535 |
+
else:
|
536 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
537 |
+
else:
|
538 |
+
D1s = None
|
539 |
+
|
540 |
+
if use_corrector:
|
541 |
+
#print('using corrector')
|
542 |
+
# for order 1, we use a simplified version
|
543 |
+
if order == 1:
|
544 |
+
rhos_c = torch.tensor([0.5], device=b.device)
|
545 |
+
else:
|
546 |
+
rhos_c = torch.linalg.solve(R, b)
|
547 |
+
|
548 |
+
model_t = None
|
549 |
+
if self.predict_x0:
|
550 |
+
x_t_ = (
|
551 |
+
sigma_t / sigma_prev_0 * x
|
552 |
+
- alpha_t * h_phi_1 * model_prev_0
|
553 |
+
)
|
554 |
+
|
555 |
+
if x_t is None:
|
556 |
+
if use_predictor:
|
557 |
+
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
558 |
+
else:
|
559 |
+
pred_res = 0
|
560 |
+
x_t = x_t_ - alpha_t * B_h * pred_res
|
561 |
+
|
562 |
+
if use_corrector:
|
563 |
+
model_t = self.model_fn(x_t, t)
|
564 |
+
if D1s is not None:
|
565 |
+
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
566 |
+
else:
|
567 |
+
corr_res = 0
|
568 |
+
D1_t = (model_t - model_prev_0)
|
569 |
+
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
570 |
+
else:
|
571 |
+
x_t_ = (
|
572 |
+
torch.exp(log_alpha_t - log_alpha_prev_0) * x
|
573 |
+
- sigma_t * h_phi_1 * model_prev_0
|
574 |
+
)
|
575 |
+
if x_t is None:
|
576 |
+
if use_predictor:
|
577 |
+
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
578 |
+
else:
|
579 |
+
pred_res = 0
|
580 |
+
x_t = x_t_ - sigma_t * B_h * pred_res
|
581 |
+
|
582 |
+
if use_corrector:
|
583 |
+
model_t = self.model_fn(x_t, t)
|
584 |
+
if D1s is not None:
|
585 |
+
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
586 |
+
else:
|
587 |
+
corr_res = 0
|
588 |
+
D1_t = (model_t - model_prev_0)
|
589 |
+
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
590 |
+
return x_t, model_t
|
591 |
+
|
592 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
|
593 |
+
method='multistep', lower_order_final=True, denoise_to_zero=False, atol=0.0078, rtol=0.05, return_intermediate=False,
|
594 |
+
):
|
595 |
+
"""
|
596 |
+
Compute the sample at time `t_end` by UniPC, given the initial `x` at time `t_start`.
|
597 |
+
"""
|
598 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
599 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
600 |
+
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
601 |
+
if return_intermediate:
|
602 |
+
assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when saving intermediate values"
|
603 |
+
if self.correcting_xt_fn is not None:
|
604 |
+
assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when correcting_xt_fn is not None"
|
605 |
+
device = x.device
|
606 |
+
intermediates = []
|
607 |
+
with torch.no_grad():
|
608 |
+
if method == 'multistep':
|
609 |
+
assert steps >= order
|
610 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
611 |
+
assert timesteps.shape[0] - 1 == steps
|
612 |
+
# Init the initial values.
|
613 |
+
step = 0
|
614 |
+
t = timesteps[step]
|
615 |
+
t_prev_list = [t]
|
616 |
+
model_prev_list = [self.model_fn(x, t)]
|
617 |
+
if self.correcting_xt_fn is not None:
|
618 |
+
x = self.correcting_xt_fn(x, t, step)
|
619 |
+
if return_intermediate:
|
620 |
+
intermediates.append(x)
|
621 |
+
|
622 |
+
# Init the first `order` values by lower order multistep UniPC.
|
623 |
+
for step in range(1, order):
|
624 |
+
t = timesteps[step]
|
625 |
+
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, t, step, use_corrector=True)
|
626 |
+
if model_x is None:
|
627 |
+
model_x = self.model_fn(x, t)
|
628 |
+
if self.correcting_xt_fn is not None:
|
629 |
+
x = self.correcting_xt_fn(x, t, step)
|
630 |
+
if return_intermediate:
|
631 |
+
intermediates.append(x)
|
632 |
+
t_prev_list.append(t)
|
633 |
+
model_prev_list.append(model_x)
|
634 |
+
|
635 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
636 |
+
for step in range(order, steps + 1):
|
637 |
+
t = timesteps[step]
|
638 |
+
if lower_order_final:
|
639 |
+
step_order = min(order, steps + 1 - step)
|
640 |
+
else:
|
641 |
+
step_order = order
|
642 |
+
if step == steps:
|
643 |
+
#print('do not run corrector at the last step')
|
644 |
+
use_corrector = False
|
645 |
+
else:
|
646 |
+
use_corrector = True
|
647 |
+
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, t, step_order, use_corrector=use_corrector)
|
648 |
+
if self.correcting_xt_fn is not None:
|
649 |
+
x = self.correcting_xt_fn(x, t, step)
|
650 |
+
if return_intermediate:
|
651 |
+
intermediates.append(x)
|
652 |
+
for i in range(order - 1):
|
653 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
654 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
655 |
+
t_prev_list[-1] = t
|
656 |
+
# We do not need to evaluate the final model value.
|
657 |
+
if step < steps:
|
658 |
+
if model_x is None:
|
659 |
+
model_x = self.model_fn(x, t)
|
660 |
+
model_prev_list[-1] = model_x
|
661 |
+
else:
|
662 |
+
raise ValueError("Got wrong method {}".format(method))
|
663 |
+
|
664 |
+
if denoise_to_zero:
|
665 |
+
t = torch.ones((1,)).to(device) * t_0
|
666 |
+
x = self.denoise_to_zero_fn(x, t)
|
667 |
+
if self.correcting_xt_fn is not None:
|
668 |
+
x = self.correcting_xt_fn(x, t, step + 1)
|
669 |
+
if return_intermediate:
|
670 |
+
intermediates.append(x)
|
671 |
+
if return_intermediate:
|
672 |
+
return x, intermediates
|
673 |
+
else:
|
674 |
+
return x
|
675 |
+
|
676 |
+
|
677 |
+
#############################################################
|
678 |
+
# other utility functions
|
679 |
+
#############################################################
|
680 |
+
|
681 |
+
def interpolate_fn(x, xp, yp):
|
682 |
+
"""
|
683 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
684 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
685 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
686 |
+
|
687 |
+
Args:
|
688 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
689 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
690 |
+
yp: PyTorch tensor with shape [C, K].
|
691 |
+
Returns:
|
692 |
+
The function values f(x), with shape [N, C].
|
693 |
+
"""
|
694 |
+
N, K = x.shape[0], xp.shape[1]
|
695 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
696 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
697 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
698 |
+
cand_start_idx = x_idx - 1
|
699 |
+
start_idx = torch.where(
|
700 |
+
torch.eq(x_idx, 0),
|
701 |
+
torch.tensor(1, device=x.device),
|
702 |
+
torch.where(
|
703 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
704 |
+
),
|
705 |
+
)
|
706 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
707 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
708 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
709 |
+
start_idx2 = torch.where(
|
710 |
+
torch.eq(x_idx, 0),
|
711 |
+
torch.tensor(0, device=x.device),
|
712 |
+
torch.where(
|
713 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
714 |
+
),
|
715 |
+
)
|
716 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
717 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
718 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
719 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
720 |
+
return cand
|
721 |
+
|
722 |
+
|
723 |
+
def expand_dims(v, dims):
|
724 |
+
"""
|
725 |
+
Expand the tensor `v` to the dim `dims`.
|
726 |
+
|
727 |
+
Args:
|
728 |
+
`v`: a PyTorch tensor with shape [N].
|
729 |
+
`dim`: a `int`.
|
730 |
+
Returns:
|
731 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
732 |
+
"""
|
733 |
+
return v[(...,) + (None,)*(dims - 1)]
|
diffusion/unit2mel.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import yaml
|
7 |
+
|
8 |
+
from .diffusion import GaussianDiffusion
|
9 |
+
from .vocoder import Vocoder
|
10 |
+
from .wavenet import WaveNet
|
11 |
+
|
12 |
+
|
13 |
+
class DotDict(dict):
|
14 |
+
def __getattr__(*args):
|
15 |
+
val = dict.get(*args)
|
16 |
+
return DotDict(val) if type(val) is dict else val
|
17 |
+
|
18 |
+
__setattr__ = dict.__setitem__
|
19 |
+
__delattr__ = dict.__delitem__
|
20 |
+
|
21 |
+
|
22 |
+
def load_model_vocoder(
|
23 |
+
model_path,
|
24 |
+
device='cpu',
|
25 |
+
config_path = None
|
26 |
+
):
|
27 |
+
if config_path is None:
|
28 |
+
config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
|
29 |
+
else:
|
30 |
+
config_file = config_path
|
31 |
+
|
32 |
+
with open(config_file, "r") as config:
|
33 |
+
args = yaml.safe_load(config)
|
34 |
+
args = DotDict(args)
|
35 |
+
|
36 |
+
# load vocoder
|
37 |
+
vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device)
|
38 |
+
|
39 |
+
# load model
|
40 |
+
model = Unit2Mel(
|
41 |
+
args.data.encoder_out_channels,
|
42 |
+
args.model.n_spk,
|
43 |
+
args.model.use_pitch_aug,
|
44 |
+
vocoder.dimension,
|
45 |
+
args.model.n_layers,
|
46 |
+
args.model.n_chans,
|
47 |
+
args.model.n_hidden,
|
48 |
+
args.model.timesteps,
|
49 |
+
args.model.k_step_max
|
50 |
+
)
|
51 |
+
|
52 |
+
print(' [Loading] ' + model_path)
|
53 |
+
ckpt = torch.load(model_path, map_location=torch.device(device))
|
54 |
+
model.to(device)
|
55 |
+
model.load_state_dict(ckpt['model'])
|
56 |
+
model.eval()
|
57 |
+
print(f'Loaded diffusion model, sampler is {args.infer.method}, speedup: {args.infer.speedup} ')
|
58 |
+
return model, vocoder, args
|
59 |
+
|
60 |
+
|
61 |
+
class Unit2Mel(nn.Module):
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
input_channel,
|
65 |
+
n_spk,
|
66 |
+
use_pitch_aug=False,
|
67 |
+
out_dims=128,
|
68 |
+
n_layers=20,
|
69 |
+
n_chans=384,
|
70 |
+
n_hidden=256,
|
71 |
+
timesteps=1000,
|
72 |
+
k_step_max=1000
|
73 |
+
):
|
74 |
+
super().__init__()
|
75 |
+
self.unit_embed = nn.Linear(input_channel, n_hidden)
|
76 |
+
self.f0_embed = nn.Linear(1, n_hidden)
|
77 |
+
self.volume_embed = nn.Linear(1, n_hidden)
|
78 |
+
if use_pitch_aug:
|
79 |
+
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
|
80 |
+
else:
|
81 |
+
self.aug_shift_embed = None
|
82 |
+
self.n_spk = n_spk
|
83 |
+
if n_spk is not None and n_spk > 1:
|
84 |
+
self.spk_embed = nn.Embedding(n_spk, n_hidden)
|
85 |
+
|
86 |
+
self.timesteps = timesteps if timesteps is not None else 1000
|
87 |
+
self.k_step_max = k_step_max if k_step_max is not None and k_step_max>0 and k_step_max<self.timesteps else self.timesteps
|
88 |
+
|
89 |
+
self.n_hidden = n_hidden
|
90 |
+
# diffusion
|
91 |
+
self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden),timesteps=self.timesteps,k_step=self.k_step_max, out_dims=out_dims)
|
92 |
+
self.input_channel = input_channel
|
93 |
+
|
94 |
+
def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
|
95 |
+
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
|
96 |
+
|
97 |
+
'''
|
98 |
+
input:
|
99 |
+
B x n_frames x n_unit
|
100 |
+
return:
|
101 |
+
dict of B x n_frames x feat
|
102 |
+
'''
|
103 |
+
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
|
104 |
+
if self.n_spk is not None and self.n_spk > 1:
|
105 |
+
if spk_mix_dict is not None:
|
106 |
+
spk_embed_mix = torch.zeros((1,1,self.hidden_size))
|
107 |
+
for k, v in spk_mix_dict.items():
|
108 |
+
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
|
109 |
+
spk_embeddd = self.spk_embed(spk_id_torch)
|
110 |
+
self.speaker_map[k] = spk_embeddd
|
111 |
+
spk_embed_mix = spk_embed_mix + v * spk_embeddd
|
112 |
+
x = x + spk_embed_mix
|
113 |
+
else:
|
114 |
+
x = x + self.spk_embed(spk_id - 1)
|
115 |
+
self.speaker_map = self.speaker_map.unsqueeze(0)
|
116 |
+
self.speaker_map = self.speaker_map.detach()
|
117 |
+
return x.transpose(1, 2)
|
118 |
+
|
119 |
+
def init_spkmix(self, n_spk):
|
120 |
+
self.speaker_map = torch.zeros((n_spk,1,1,self.n_hidden))
|
121 |
+
hubert_hidden_size = self.input_channel
|
122 |
+
n_frames = 10
|
123 |
+
hubert = torch.randn((1, n_frames, hubert_hidden_size))
|
124 |
+
f0 = torch.randn((1, n_frames))
|
125 |
+
volume = torch.randn((1, n_frames))
|
126 |
+
spks = {}
|
127 |
+
for i in range(n_spk):
|
128 |
+
spks.update({i:1.0/float(self.n_spk)})
|
129 |
+
self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
|
130 |
+
|
131 |
+
def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
|
132 |
+
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
|
133 |
+
|
134 |
+
'''
|
135 |
+
input:
|
136 |
+
B x n_frames x n_unit
|
137 |
+
return:
|
138 |
+
dict of B x n_frames x feat
|
139 |
+
'''
|
140 |
+
|
141 |
+
if not self.training and gt_spec is not None and k_step>self.k_step_max:
|
142 |
+
raise Exception("The shallow diffusion k_step is greater than the maximum diffusion k_step(k_step_max)!")
|
143 |
+
|
144 |
+
if not self.training and gt_spec is None and self.k_step_max!=self.timesteps:
|
145 |
+
raise Exception("This model can only be used for shallow diffusion and can not infer alone!")
|
146 |
+
|
147 |
+
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
|
148 |
+
if self.n_spk is not None and self.n_spk > 1:
|
149 |
+
if spk_mix_dict is not None:
|
150 |
+
for k, v in spk_mix_dict.items():
|
151 |
+
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
|
152 |
+
x = x + v * self.spk_embed(spk_id_torch)
|
153 |
+
else:
|
154 |
+
if spk_id.shape[1] > 1:
|
155 |
+
g = spk_id.reshape((spk_id.shape[0], spk_id.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
|
156 |
+
g = g * self.speaker_map # [N, S, B, 1, H]
|
157 |
+
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
|
158 |
+
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
|
159 |
+
x = x + g
|
160 |
+
else:
|
161 |
+
x = x + self.spk_embed(spk_id)
|
162 |
+
if self.aug_shift_embed is not None and aug_shift is not None:
|
163 |
+
x = x + self.aug_shift_embed(aug_shift / 5)
|
164 |
+
x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm)
|
165 |
+
|
166 |
+
return x
|
167 |
+
|
diffusion/vocoder.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchaudio.transforms import Resample
|
3 |
+
|
4 |
+
from vdecoder.nsf_hifigan.models import load_config, load_model
|
5 |
+
from vdecoder.nsf_hifigan.nvSTFT import STFT
|
6 |
+
|
7 |
+
|
8 |
+
class Vocoder:
|
9 |
+
def __init__(self, vocoder_type, vocoder_ckpt, device = None):
|
10 |
+
if device is None:
|
11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
self.device = device
|
13 |
+
|
14 |
+
if vocoder_type == 'nsf-hifigan':
|
15 |
+
self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device)
|
16 |
+
elif vocoder_type == 'nsf-hifigan-log10':
|
17 |
+
self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device)
|
18 |
+
else:
|
19 |
+
raise ValueError(f" [x] Unknown vocoder: {vocoder_type}")
|
20 |
+
|
21 |
+
self.resample_kernel = {}
|
22 |
+
self.vocoder_sample_rate = self.vocoder.sample_rate()
|
23 |
+
self.vocoder_hop_size = self.vocoder.hop_size()
|
24 |
+
self.dimension = self.vocoder.dimension()
|
25 |
+
|
26 |
+
def extract(self, audio, sample_rate, keyshift=0):
|
27 |
+
|
28 |
+
# resample
|
29 |
+
if sample_rate == self.vocoder_sample_rate:
|
30 |
+
audio_res = audio
|
31 |
+
else:
|
32 |
+
key_str = str(sample_rate)
|
33 |
+
if key_str not in self.resample_kernel:
|
34 |
+
self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device)
|
35 |
+
audio_res = self.resample_kernel[key_str](audio)
|
36 |
+
|
37 |
+
# extract
|
38 |
+
mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins
|
39 |
+
return mel
|
40 |
+
|
41 |
+
def infer(self, mel, f0):
|
42 |
+
f0 = f0[:,:mel.size(1),0] # B, n_frames
|
43 |
+
audio = self.vocoder(mel, f0)
|
44 |
+
return audio
|
45 |
+
|
46 |
+
|
47 |
+
class NsfHifiGAN(torch.nn.Module):
|
48 |
+
def __init__(self, model_path, device=None):
|
49 |
+
super().__init__()
|
50 |
+
if device is None:
|
51 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
52 |
+
self.device = device
|
53 |
+
self.model_path = model_path
|
54 |
+
self.model = None
|
55 |
+
self.h = load_config(model_path)
|
56 |
+
self.stft = STFT(
|
57 |
+
self.h.sampling_rate,
|
58 |
+
self.h.num_mels,
|
59 |
+
self.h.n_fft,
|
60 |
+
self.h.win_size,
|
61 |
+
self.h.hop_size,
|
62 |
+
self.h.fmin,
|
63 |
+
self.h.fmax)
|
64 |
+
|
65 |
+
def sample_rate(self):
|
66 |
+
return self.h.sampling_rate
|
67 |
+
|
68 |
+
def hop_size(self):
|
69 |
+
return self.h.hop_size
|
70 |
+
|
71 |
+
def dimension(self):
|
72 |
+
return self.h.num_mels
|
73 |
+
|
74 |
+
def extract(self, audio, keyshift=0):
|
75 |
+
mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins
|
76 |
+
return mel
|
77 |
+
|
78 |
+
def forward(self, mel, f0):
|
79 |
+
if self.model is None:
|
80 |
+
print('| Load HifiGAN: ', self.model_path)
|
81 |
+
self.model, self.h = load_model(self.model_path, device=self.device)
|
82 |
+
with torch.no_grad():
|
83 |
+
c = mel.transpose(1, 2)
|
84 |
+
audio = self.model(c, f0)
|
85 |
+
return audio
|
86 |
+
|
87 |
+
class NsfHifiGANLog10(NsfHifiGAN):
|
88 |
+
def forward(self, mel, f0):
|
89 |
+
if self.model is None:
|
90 |
+
print('| Load HifiGAN: ', self.model_path)
|
91 |
+
self.model, self.h = load_model(self.model_path, device=self.device)
|
92 |
+
with torch.no_grad():
|
93 |
+
c = 0.434294 * mel.transpose(1, 2)
|
94 |
+
audio = self.model(c, f0)
|
95 |
+
return audio
|
diffusion/wavenet.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from math import sqrt
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.nn import Mish
|
8 |
+
|
9 |
+
|
10 |
+
class Conv1d(torch.nn.Conv1d):
|
11 |
+
def __init__(self, *args, **kwargs):
|
12 |
+
super().__init__(*args, **kwargs)
|
13 |
+
nn.init.kaiming_normal_(self.weight)
|
14 |
+
|
15 |
+
|
16 |
+
class SinusoidalPosEmb(nn.Module):
|
17 |
+
def __init__(self, dim):
|
18 |
+
super().__init__()
|
19 |
+
self.dim = dim
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
device = x.device
|
23 |
+
half_dim = self.dim // 2
|
24 |
+
emb = math.log(10000) / (half_dim - 1)
|
25 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
26 |
+
emb = x[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
28 |
+
return emb
|
29 |
+
|
30 |
+
|
31 |
+
class ResidualBlock(nn.Module):
|
32 |
+
def __init__(self, encoder_hidden, residual_channels, dilation):
|
33 |
+
super().__init__()
|
34 |
+
self.residual_channels = residual_channels
|
35 |
+
self.dilated_conv = nn.Conv1d(
|
36 |
+
residual_channels,
|
37 |
+
2 * residual_channels,
|
38 |
+
kernel_size=3,
|
39 |
+
padding=dilation,
|
40 |
+
dilation=dilation
|
41 |
+
)
|
42 |
+
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
|
43 |
+
self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1)
|
44 |
+
self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1)
|
45 |
+
|
46 |
+
def forward(self, x, conditioner, diffusion_step):
|
47 |
+
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
48 |
+
conditioner = self.conditioner_projection(conditioner)
|
49 |
+
y = x + diffusion_step
|
50 |
+
|
51 |
+
y = self.dilated_conv(y) + conditioner
|
52 |
+
|
53 |
+
# Using torch.split instead of torch.chunk to avoid using onnx::Slice
|
54 |
+
gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
55 |
+
y = torch.sigmoid(gate) * torch.tanh(filter)
|
56 |
+
|
57 |
+
y = self.output_projection(y)
|
58 |
+
|
59 |
+
# Using torch.split instead of torch.chunk to avoid using onnx::Slice
|
60 |
+
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
|
61 |
+
return (x + residual) / math.sqrt(2.0), skip
|
62 |
+
|
63 |
+
|
64 |
+
class WaveNet(nn.Module):
|
65 |
+
def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
|
66 |
+
super().__init__()
|
67 |
+
self.input_projection = Conv1d(in_dims, n_chans, 1)
|
68 |
+
self.diffusion_embedding = SinusoidalPosEmb(n_chans)
|
69 |
+
self.mlp = nn.Sequential(
|
70 |
+
nn.Linear(n_chans, n_chans * 4),
|
71 |
+
Mish(),
|
72 |
+
nn.Linear(n_chans * 4, n_chans)
|
73 |
+
)
|
74 |
+
self.residual_layers = nn.ModuleList([
|
75 |
+
ResidualBlock(
|
76 |
+
encoder_hidden=n_hidden,
|
77 |
+
residual_channels=n_chans,
|
78 |
+
dilation=1
|
79 |
+
)
|
80 |
+
for i in range(n_layers)
|
81 |
+
])
|
82 |
+
self.skip_projection = Conv1d(n_chans, n_chans, 1)
|
83 |
+
self.output_projection = Conv1d(n_chans, in_dims, 1)
|
84 |
+
nn.init.zeros_(self.output_projection.weight)
|
85 |
+
|
86 |
+
def forward(self, spec, diffusion_step, cond):
|
87 |
+
"""
|
88 |
+
:param spec: [B, 1, M, T]
|
89 |
+
:param diffusion_step: [B, 1]
|
90 |
+
:param cond: [B, M, T]
|
91 |
+
:return:
|
92 |
+
"""
|
93 |
+
x = spec.squeeze(1)
|
94 |
+
x = self.input_projection(x) # [B, residual_channel, T]
|
95 |
+
|
96 |
+
x = F.relu(x)
|
97 |
+
diffusion_step = self.diffusion_embedding(diffusion_step)
|
98 |
+
diffusion_step = self.mlp(diffusion_step)
|
99 |
+
skip = []
|
100 |
+
for layer in self.residual_layers:
|
101 |
+
x, skip_connection = layer(x, cond, diffusion_step)
|
102 |
+
skip.append(skip_connection)
|
103 |
+
|
104 |
+
x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
|
105 |
+
x = self.skip_projection(x)
|
106 |
+
x = F.relu(x)
|
107 |
+
x = self.output_projection(x) # [B, mel_bins, T]
|
108 |
+
return x[:, None, :, :]
|
edgetts/tts.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import random
|
3 |
+
import sys
|
4 |
+
|
5 |
+
import edge_tts
|
6 |
+
from edge_tts import VoicesManager
|
7 |
+
from langdetect import DetectorFactory, detect
|
8 |
+
|
9 |
+
DetectorFactory.seed = 0
|
10 |
+
|
11 |
+
TEXT = sys.argv[1]
|
12 |
+
LANG = detect(TEXT) if sys.argv[2] == "Auto" else sys.argv[2]
|
13 |
+
RATE = sys.argv[3]
|
14 |
+
VOLUME = sys.argv[4]
|
15 |
+
GENDER = sys.argv[5] if len(sys.argv) == 6 else None
|
16 |
+
OUTPUT_FILE = "tts.wav"
|
17 |
+
|
18 |
+
print("Running TTS...")
|
19 |
+
print(f"Text: {TEXT}, Language: {LANG}, Gender: {GENDER}, Rate: {RATE}, Volume: {VOLUME}")
|
20 |
+
|
21 |
+
async def _main() -> None:
|
22 |
+
voices = await VoicesManager.create()
|
23 |
+
if GENDER is not None:
|
24 |
+
# From "zh-cn" to "zh-CN" etc.
|
25 |
+
if LANG == "zh-cn" or LANG == "zh-tw":
|
26 |
+
LOCALE = LANG[:-2] + LANG[-2:].upper()
|
27 |
+
voice = voices.find(Gender=GENDER, Locale=LOCALE)
|
28 |
+
else:
|
29 |
+
voice = voices.find(Gender=GENDER, Language=LANG)
|
30 |
+
VOICE = random.choice(voice)["Name"]
|
31 |
+
print(f"Using random {LANG} voice: {VOICE}")
|
32 |
+
else:
|
33 |
+
VOICE = LANG
|
34 |
+
|
35 |
+
communicate = edge_tts.Communicate(text = TEXT, voice = VOICE, rate = RATE, volume = VOLUME)
|
36 |
+
await communicate.save(OUTPUT_FILE)
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
if sys.platform.startswith("win"):
|
40 |
+
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
41 |
+
asyncio.run(_main())
|
42 |
+
else:
|
43 |
+
loop = asyncio.get_event_loop_policy().get_event_loop()
|
44 |
+
try:
|
45 |
+
loop.run_until_complete(_main())
|
46 |
+
finally:
|
47 |
+
loop.close()
|
edgetts/tts_voices.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#List of Supported Voices for edge_TTS
|
2 |
+
SUPPORTED_VOICES = {
|
3 |
+
'zh-CN-XiaoxiaoNeural': 'zh-CN',
|
4 |
+
'zh-CN-XiaoyiNeural': 'zh-CN',
|
5 |
+
'zh-CN-YunjianNeural': 'zh-CN',
|
6 |
+
'zh-CN-YunxiNeural': 'zh-CN',
|
7 |
+
'zh-CN-YunxiaNeural': 'zh-CN',
|
8 |
+
'zh-CN-YunyangNeural': 'zh-CN',
|
9 |
+
'zh-HK-HiuGaaiNeural': 'zh-HK',
|
10 |
+
'zh-HK-HiuMaanNeural': 'zh-HK',
|
11 |
+
'zh-HK-WanLungNeural': 'zh-HK',
|
12 |
+
'zh-TW-HsiaoChenNeural': 'zh-TW',
|
13 |
+
'zh-TW-YunJheNeural': 'zh-TW',
|
14 |
+
'zh-TW-HsiaoYuNeural': 'zh-TW',
|
15 |
+
'af-ZA-AdriNeural': 'af-ZA',
|
16 |
+
'af-ZA-WillemNeural': 'af-ZA',
|
17 |
+
'am-ET-AmehaNeural': 'am-ET',
|
18 |
+
'am-ET-MekdesNeural': 'am-ET',
|
19 |
+
'ar-AE-FatimaNeural': 'ar-AE',
|
20 |
+
'ar-AE-HamdanNeural': 'ar-AE',
|
21 |
+
'ar-BH-AliNeural': 'ar-BH',
|
22 |
+
'ar-BH-LailaNeural': 'ar-BH',
|
23 |
+
'ar-DZ-AminaNeural': 'ar-DZ',
|
24 |
+
'ar-DZ-IsmaelNeural': 'ar-DZ',
|
25 |
+
'ar-EG-SalmaNeural': 'ar-EG',
|
26 |
+
'ar-EG-ShakirNeural': 'ar-EG',
|
27 |
+
'ar-IQ-BasselNeural': 'ar-IQ',
|
28 |
+
'ar-IQ-RanaNeural': 'ar-IQ',
|
29 |
+
'ar-JO-SanaNeural': 'ar-JO',
|
30 |
+
'ar-JO-TaimNeural': 'ar-JO',
|
31 |
+
'ar-KW-FahedNeural': 'ar-KW',
|
32 |
+
'ar-KW-NouraNeural': 'ar-KW',
|
33 |
+
'ar-LB-LaylaNeural': 'ar-LB',
|
34 |
+
'ar-LB-RamiNeural': 'ar-LB',
|
35 |
+
'ar-LY-ImanNeural': 'ar-LY',
|
36 |
+
'ar-LY-OmarNeural': 'ar-LY',
|
37 |
+
'ar-MA-JamalNeural': 'ar-MA',
|
38 |
+
'ar-MA-MounaNeural': 'ar-MA',
|
39 |
+
'ar-OM-AbdullahNeural': 'ar-OM',
|
40 |
+
'ar-OM-AyshaNeural': 'ar-OM',
|
41 |
+
'ar-QA-AmalNeural': 'ar-QA',
|
42 |
+
'ar-QA-MoazNeural': 'ar-QA',
|
43 |
+
'ar-SA-HamedNeural': 'ar-SA',
|
44 |
+
'ar-SA-ZariyahNeural': 'ar-SA',
|
45 |
+
'ar-SY-AmanyNeural': 'ar-SY',
|
46 |
+
'ar-SY-LaithNeural': 'ar-SY',
|
47 |
+
'ar-TN-HediNeural': 'ar-TN',
|
48 |
+
'ar-TN-ReemNeural': 'ar-TN',
|
49 |
+
'ar-YE-MaryamNeural': 'ar-YE',
|
50 |
+
'ar-YE-SalehNeural': 'ar-YE',
|
51 |
+
'az-AZ-BabekNeural': 'az-AZ',
|
52 |
+
'az-AZ-BanuNeural': 'az-AZ',
|
53 |
+
'bg-BG-BorislavNeural': 'bg-BG',
|
54 |
+
'bg-BG-KalinaNeural': 'bg-BG',
|
55 |
+
'bn-BD-NabanitaNeural': 'bn-BD',
|
56 |
+
'bn-BD-PradeepNeural': 'bn-BD',
|
57 |
+
'bn-IN-BashkarNeural': 'bn-IN',
|
58 |
+
'bn-IN-TanishaaNeural': 'bn-IN',
|
59 |
+
'bs-BA-GoranNeural': 'bs-BA',
|
60 |
+
'bs-BA-VesnaNeural': 'bs-BA',
|
61 |
+
'ca-ES-EnricNeural': 'ca-ES',
|
62 |
+
'ca-ES-JoanaNeural': 'ca-ES',
|
63 |
+
'cs-CZ-AntoninNeural': 'cs-CZ',
|
64 |
+
'cs-CZ-VlastaNeural': 'cs-CZ',
|
65 |
+
'cy-GB-AledNeural': 'cy-GB',
|
66 |
+
'cy-GB-NiaNeural': 'cy-GB',
|
67 |
+
'da-DK-ChristelNeural': 'da-DK',
|
68 |
+
'da-DK-JeppeNeural': 'da-DK',
|
69 |
+
'de-AT-IngridNeural': 'de-AT',
|
70 |
+
'de-AT-JonasNeural': 'de-AT',
|
71 |
+
'de-CH-JanNeural': 'de-CH',
|
72 |
+
'de-CH-LeniNeural': 'de-CH',
|
73 |
+
'de-DE-AmalaNeural': 'de-DE',
|
74 |
+
'de-DE-ConradNeural': 'de-DE',
|
75 |
+
'de-DE-KatjaNeural': 'de-DE',
|
76 |
+
'de-DE-KillianNeural': 'de-DE',
|
77 |
+
'el-GR-AthinaNeural': 'el-GR',
|
78 |
+
'el-GR-NestorasNeural': 'el-GR',
|
79 |
+
'en-AU-NatashaNeural': 'en-AU',
|
80 |
+
'en-AU-WilliamNeural': 'en-AU',
|
81 |
+
'en-CA-ClaraNeural': 'en-CA',
|
82 |
+
'en-CA-LiamNeural': 'en-CA',
|
83 |
+
'en-GB-LibbyNeural': 'en-GB',
|
84 |
+
'en-GB-MaisieNeural': 'en-GB',
|
85 |
+
'en-GB-RyanNeural': 'en-GB',
|
86 |
+
'en-GB-SoniaNeural': 'en-GB',
|
87 |
+
'en-GB-ThomasNeural': 'en-GB',
|
88 |
+
'en-HK-SamNeural': 'en-HK',
|
89 |
+
'en-HK-YanNeural': 'en-HK',
|
90 |
+
'en-IE-ConnorNeural': 'en-IE',
|
91 |
+
'en-IE-EmilyNeural': 'en-IE',
|
92 |
+
'en-IN-NeerjaNeural': 'en-IN',
|
93 |
+
'en-IN-PrabhatNeural': 'en-IN',
|
94 |
+
'en-KE-AsiliaNeural': 'en-KE',
|
95 |
+
'en-KE-ChilembaNeural': 'en-KE',
|
96 |
+
'en-NG-AbeoNeural': 'en-NG',
|
97 |
+
'en-NG-EzinneNeural': 'en-NG',
|
98 |
+
'en-NZ-MitchellNeural': 'en-NZ',
|
99 |
+
'en-NZ-MollyNeural': 'en-NZ',
|
100 |
+
'en-PH-JamesNeural': 'en-PH',
|
101 |
+
'en-PH-RosaNeural': 'en-PH',
|
102 |
+
'en-SG-LunaNeural': 'en-SG',
|
103 |
+
'en-SG-WayneNeural': 'en-SG',
|
104 |
+
'en-TZ-ElimuNeural': 'en-TZ',
|
105 |
+
'en-TZ-ImaniNeural': 'en-TZ',
|
106 |
+
'en-US-AnaNeural': 'en-US',
|
107 |
+
'en-US-AriaNeural': 'en-US',
|
108 |
+
'en-US-ChristopherNeural': 'en-US',
|
109 |
+
'en-US-EricNeural': 'en-US',
|
110 |
+
'en-US-GuyNeural': 'en-US',
|
111 |
+
'en-US-JennyNeural': 'en-US',
|
112 |
+
'en-US-MichelleNeural': 'en-US',
|
113 |
+
'en-ZA-LeahNeural': 'en-ZA',
|
114 |
+
'en-ZA-LukeNeural': 'en-ZA',
|
115 |
+
'es-AR-ElenaNeural': 'es-AR',
|
116 |
+
'es-AR-TomasNeural': 'es-AR',
|
117 |
+
'es-BO-MarceloNeural': 'es-BO',
|
118 |
+
'es-BO-SofiaNeural': 'es-BO',
|
119 |
+
'es-CL-CatalinaNeural': 'es-CL',
|
120 |
+
'es-CL-LorenzoNeural': 'es-CL',
|
121 |
+
'es-CO-GonzaloNeural': 'es-CO',
|
122 |
+
'es-CO-SalomeNeural': 'es-CO',
|
123 |
+
'es-CR-JuanNeural': 'es-CR',
|
124 |
+
'es-CR-MariaNeural': 'es-CR',
|
125 |
+
'es-CU-BelkysNeural': 'es-CU',
|
126 |
+
'es-CU-ManuelNeural': 'es-CU',
|
127 |
+
'es-DO-EmilioNeural': 'es-DO',
|
128 |
+
'es-DO-RamonaNeural': 'es-DO',
|
129 |
+
'es-EC-AndreaNeural': 'es-EC',
|
130 |
+
'es-EC-LuisNeural': 'es-EC',
|
131 |
+
'es-ES-AlvaroNeural': 'es-ES',
|
132 |
+
'es-ES-ElviraNeural': 'es-ES',
|
133 |
+
'es-ES-ManuelEsCUNeural': 'es-ES',
|
134 |
+
'es-GQ-JavierNeural': 'es-GQ',
|
135 |
+
'es-GQ-TeresaNeural': 'es-GQ',
|
136 |
+
'es-GT-AndresNeural': 'es-GT',
|
137 |
+
'es-GT-MartaNeural': 'es-GT',
|
138 |
+
'es-HN-CarlosNeural': 'es-HN',
|
139 |
+
'es-HN-KarlaNeural': 'es-HN',
|
140 |
+
'es-MX-DaliaNeural': 'es-MX',
|
141 |
+
'es-MX-JorgeNeural': 'es-MX',
|
142 |
+
'es-MX-LorenzoEsCLNeural': 'es-MX',
|
143 |
+
'es-NI-FedericoNeural': 'es-NI',
|
144 |
+
'es-NI-YolandaNeural': 'es-NI',
|
145 |
+
'es-PA-MargaritaNeural': 'es-PA',
|
146 |
+
'es-PA-RobertoNeural': 'es-PA',
|
147 |
+
'es-PE-AlexNeural': 'es-PE',
|
148 |
+
'es-PE-CamilaNeural': 'es-PE',
|
149 |
+
'es-PR-KarinaNeural': 'es-PR',
|
150 |
+
'es-PR-VictorNeural': 'es-PR',
|
151 |
+
'es-PY-MarioNeural': 'es-PY',
|
152 |
+
'es-PY-TaniaNeural': 'es-PY',
|
153 |
+
'es-SV-LorenaNeural': 'es-SV',
|
154 |
+
'es-SV-RodrigoNeural': 'es-SV',
|
155 |
+
'es-US-AlonsoNeural': 'es-US',
|
156 |
+
'es-US-PalomaNeural': 'es-US',
|
157 |
+
'es-UY-MateoNeural': 'es-UY',
|
158 |
+
'es-UY-ValentinaNeural': 'es-UY',
|
159 |
+
'es-VE-PaolaNeural': 'es-VE',
|
160 |
+
'es-VE-SebastianNeural': 'es-VE',
|
161 |
+
'et-EE-AnuNeural': 'et-EE',
|
162 |
+
'et-EE-KertNeural': 'et-EE',
|
163 |
+
'fa-IR-DilaraNeural': 'fa-IR',
|
164 |
+
'fa-IR-FaridNeural': 'fa-IR',
|
165 |
+
'fi-FI-HarriNeural': 'fi-FI',
|
166 |
+
'fi-FI-NooraNeural': 'fi-FI',
|
167 |
+
'fil-PH-AngeloNeural': 'fil-PH',
|
168 |
+
'fil-PH-BlessicaNeural': 'fil-PH',
|
169 |
+
'fr-BE-CharlineNeural': 'fr-BE',
|
170 |
+
'fr-BE-GerardNeural': 'fr-BE',
|
171 |
+
'fr-CA-AntoineNeural': 'fr-CA',
|
172 |
+
'fr-CA-JeanNeural': 'fr-CA',
|
173 |
+
'fr-CA-SylvieNeural': 'fr-CA',
|
174 |
+
'fr-CH-ArianeNeural': 'fr-CH',
|
175 |
+
'fr-CH-FabriceNeural': 'fr-CH',
|
176 |
+
'fr-FR-DeniseNeural': 'fr-FR',
|
177 |
+
'fr-FR-EloiseNeural': 'fr-FR',
|
178 |
+
'fr-FR-HenriNeural': 'fr-FR',
|
179 |
+
'ga-IE-ColmNeural': 'ga-IE',
|
180 |
+
'ga-IE-OrlaNeural': 'ga-IE',
|
181 |
+
'gl-ES-RoiNeural': 'gl-ES',
|
182 |
+
'gl-ES-SabelaNeural': 'gl-ES',
|
183 |
+
'gu-IN-DhwaniNeural': 'gu-IN',
|
184 |
+
'gu-IN-NiranjanNeural': 'gu-IN',
|
185 |
+
'he-IL-AvriNeural': 'he-IL',
|
186 |
+
'he-IL-HilaNeural': 'he-IL',
|
187 |
+
'hi-IN-MadhurNeural': 'hi-IN',
|
188 |
+
'hi-IN-SwaraNeural': 'hi-IN',
|
189 |
+
'hr-HR-GabrijelaNeural': 'hr-HR',
|
190 |
+
'hr-HR-SreckoNeural': 'hr-HR',
|
191 |
+
'hu-HU-NoemiNeural': 'hu-HU',
|
192 |
+
'hu-HU-TamasNeural': 'hu-HU',
|
193 |
+
'id-ID-ArdiNeural': 'id-ID',
|
194 |
+
'id-ID-GadisNeural': 'id-ID',
|
195 |
+
'is-IS-GudrunNeural': 'is-IS',
|
196 |
+
'is-IS-GunnarNeural': 'is-IS',
|
197 |
+
'it-IT-DiegoNeural': 'it-IT',
|
198 |
+
'it-IT-ElsaNeural': 'it-IT',
|
199 |
+
'it-IT-IsabellaNeural': 'it-IT',
|
200 |
+
'ja-JP-KeitaNeural': 'ja-JP',
|
201 |
+
'ja-JP-NanamiNeural': 'ja-JP',
|
202 |
+
'jv-ID-DimasNeural': 'jv-ID',
|
203 |
+
'jv-ID-SitiNeural': 'jv-ID',
|
204 |
+
'ka-GE-EkaNeural': 'ka-GE',
|
205 |
+
'ka-GE-GiorgiNeural': 'ka-GE',
|
206 |
+
'kk-KZ-AigulNeural': 'kk-KZ',
|
207 |
+
'kk-KZ-DauletNeural': 'kk-KZ',
|
208 |
+
'km-KH-PisethNeural': 'km-KH',
|
209 |
+
'km-KH-SreymomNeural': 'km-KH',
|
210 |
+
'kn-IN-GaganNeural': 'kn-IN',
|
211 |
+
'kn-IN-SapnaNeural': 'kn-IN',
|
212 |
+
'ko-KR-InJoonNeural': 'ko-KR',
|
213 |
+
'ko-KR-SunHiNeural': 'ko-KR',
|
214 |
+
'lo-LA-ChanthavongNeural': 'lo-LA',
|
215 |
+
'lo-LA-KeomanyNeural': 'lo-LA',
|
216 |
+
'lt-LT-LeonasNeural': 'lt-LT',
|
217 |
+
'lt-LT-OnaNeural': 'lt-LT',
|
218 |
+
'lv-LV-EveritaNeural': 'lv-LV',
|
219 |
+
'lv-LV-NilsNeural': 'lv-LV',
|
220 |
+
'mk-MK-AleksandarNeural': 'mk-MK',
|
221 |
+
'mk-MK-MarijaNeural': 'mk-MK',
|
222 |
+
'ml-IN-MidhunNeural': 'ml-IN',
|
223 |
+
'ml-IN-SobhanaNeural': 'ml-IN',
|
224 |
+
'mn-MN-BataaNeural': 'mn-MN',
|
225 |
+
'mn-MN-YesuiNeural': 'mn-MN',
|
226 |
+
'mr-IN-AarohiNeural': 'mr-IN',
|
227 |
+
'mr-IN-ManoharNeural': 'mr-IN',
|
228 |
+
'ms-MY-OsmanNeural': 'ms-MY',
|
229 |
+
'ms-MY-YasminNeural': 'ms-MY',
|
230 |
+
'mt-MT-GraceNeural': 'mt-MT',
|
231 |
+
'mt-MT-JosephNeural': 'mt-MT',
|
232 |
+
'my-MM-NilarNeural': 'my-MM',
|
233 |
+
'my-MM-ThihaNeural': 'my-MM',
|
234 |
+
'nb-NO-FinnNeural': 'nb-NO',
|
235 |
+
'nb-NO-PernilleNeural': 'nb-NO',
|
236 |
+
'ne-NP-HemkalaNeural': 'ne-NP',
|
237 |
+
'ne-NP-SagarNeural': 'ne-NP',
|
238 |
+
'nl-BE-ArnaudNeural': 'nl-BE',
|
239 |
+
'nl-BE-DenaNeural': 'nl-BE',
|
240 |
+
'nl-NL-ColetteNeural': 'nl-NL',
|
241 |
+
'nl-NL-FennaNeural': 'nl-NL',
|
242 |
+
'nl-NL-MaartenNeural': 'nl-NL',
|
243 |
+
'pl-PL-MarekNeural': 'pl-PL',
|
244 |
+
'pl-PL-ZofiaNeural': 'pl-PL',
|
245 |
+
'ps-AF-GulNawazNeural': 'ps-AF',
|
246 |
+
'ps-AF-LatifaNeural': 'ps-AF',
|
247 |
+
'pt-BR-AntonioNeural': 'pt-BR',
|
248 |
+
'pt-BR-FranciscaNeural': 'pt-BR',
|
249 |
+
'pt-PT-DuarteNeural': 'pt-PT',
|
250 |
+
'pt-PT-RaquelNeural': 'pt-PT',
|
251 |
+
'ro-RO-AlinaNeural': 'ro-RO',
|
252 |
+
'ro-RO-EmilNeural': 'ro-RO',
|
253 |
+
'ru-RU-DmitryNeural': 'ru-RU',
|
254 |
+
'ru-RU-SvetlanaNeural': 'ru-RU',
|
255 |
+
'si-LK-SameeraNeural': 'si-LK',
|
256 |
+
'si-LK-ThiliniNeural': 'si-LK',
|
257 |
+
'sk-SK-LukasNeural': 'sk-SK',
|
258 |
+
'sk-SK-ViktoriaNeural': 'sk-SK',
|
259 |
+
'sl-SI-PetraNeural': 'sl-SI',
|
260 |
+
'sl-SI-RokNeural': 'sl-SI',
|
261 |
+
'so-SO-MuuseNeural': 'so-SO',
|
262 |
+
'so-SO-UbaxNeural': 'so-SO',
|
263 |
+
'sq-AL-AnilaNeural': 'sq-AL',
|
264 |
+
'sq-AL-IlirNeural': 'sq-AL',
|
265 |
+
'sr-RS-NicholasNeural': 'sr-RS',
|
266 |
+
'sr-RS-SophieNeural': 'sr-RS',
|
267 |
+
'su-ID-JajangNeural': 'su-ID',
|
268 |
+
'su-ID-TutiNeural': 'su-ID',
|
269 |
+
'sv-SE-MattiasNeural': 'sv-SE',
|
270 |
+
'sv-SE-SofieNeural': 'sv-SE',
|
271 |
+
'sw-KE-RafikiNeural': 'sw-KE',
|
272 |
+
'sw-KE-ZuriNeural': 'sw-KE',
|
273 |
+
'sw-TZ-DaudiNeural': 'sw-TZ',
|
274 |
+
'sw-TZ-RehemaNeural': 'sw-TZ',
|
275 |
+
'ta-IN-PallaviNeural': 'ta-IN',
|
276 |
+
'ta-IN-ValluvarNeural': 'ta-IN',
|
277 |
+
'ta-LK-KumarNeural': 'ta-LK',
|
278 |
+
'ta-LK-SaranyaNeural': 'ta-LK',
|
279 |
+
'ta-MY-KaniNeural': 'ta-MY',
|
280 |
+
'ta-MY-SuryaNeural': 'ta-MY',
|
281 |
+
'ta-SG-AnbuNeural': 'ta-SG',
|
282 |
+
'ta-SG-VenbaNeural': 'ta-SG',
|
283 |
+
'te-IN-MohanNeural': 'te-IN',
|
284 |
+
'te-IN-ShrutiNeural': 'te-IN',
|
285 |
+
'th-TH-NiwatNeural': 'th-TH',
|
286 |
+
'th-TH-PremwadeeNeural': 'th-TH',
|
287 |
+
'tr-TR-AhmetNeural': 'tr-TR',
|
288 |
+
'tr-TR-EmelNeural': 'tr-TR',
|
289 |
+
'uk-UA-OstapNeural': 'uk-UA',
|
290 |
+
'uk-UA-PolinaNeural': 'uk-UA',
|
291 |
+
'ur-IN-GulNeural': 'ur-IN',
|
292 |
+
'ur-IN-SalmanNeural': 'ur-IN',
|
293 |
+
'ur-PK-AsadNeural': 'ur-PK',
|
294 |
+
'ur-PK-UzmaNeural': 'ur-PK',
|
295 |
+
'uz-UZ-MadinaNeural': 'uz-UZ',
|
296 |
+
'uz-UZ-SardorNeural': 'uz-UZ',
|
297 |
+
'vi-VN-HoaiMyNeural': 'vi-VN',
|
298 |
+
'vi-VN-NamMinhNeural': 'vi-VN',
|
299 |
+
'zu-ZA-ThandoNeural': 'zu-ZA',
|
300 |
+
'zu-ZA-ThembaNeural': 'zu-ZA',
|
301 |
+
}
|
302 |
+
|
303 |
+
SUPPORTED_LANGUAGES = [
|
304 |
+
"Auto",
|
305 |
+
*SUPPORTED_VOICES.keys()
|
306 |
+
]
|