Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 20,015 Bytes
7ba9119 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
import marimo
__generated_with = "0.11.21"
app = marimo.App(width="medium")
@app.cell
def _():
# # Uncomment this code if you want to run the notebook on marimo cloud
# import micropip # type: ignore
# await micropip.install("Mastodon.py")
# await micropip.install("loguru")
return
@app.cell
def _():
import marimo as mo
import pickle
import time
import altair as alt
from sklearn.manifold import TSNE
import pandas as pd
from pathlib import Path
import json
import os
import numpy as np
from byota.embeddings import EmbeddingService, LLamafileEmbeddingService
from byota.search import SearchService
return (
EmbeddingService,
LLamafileEmbeddingService,
Path,
SearchService,
TSNE,
alt,
json,
mo,
np,
os,
pd,
pickle,
time,
)
@app.cell
def _():
# internal variables
# dump files for offline mode
dataframes_data_file = "data/dump_dataframes_demo.pkl"
embeddings_data_file = "data/dump_embeddings_demo.pkl"
user_statuses_data_file = "data/dump_user_statuses_demo.pkl"
return dataframes_data_file, embeddings_data_file, user_statuses_data_file
@app.cell
def _(mo):
mo.md(
"""
# Build Your Own Timeline Algorithm
Welcome to BYOTA's demo!
This small Web application shows some of the things you could do running BYOTA's code on your own timeline.
As this is open for anyone to use, this version of the code does not connect to any real social network, but uses either synthetic data (to simulate posts in the home, local, and public timelines) or posts from [my Mastodon account](http://fosstodon.org/@mala).
If you want to use BYOTA with your own data, feel free to check its [⌨️ code](https://github.com/mozilla-ai/byota)
and [📖 documentation](https://mozilla-ai.github.io/byota/).
So, feel free to just click "submit" in the following Configuration form and... see what happens!
"""
)
return
@app.cell
def _(configuration_form):
configuration_form
return
@app.cell
def _(
LLamafileEmbeddingService,
configuration_form,
dataframes_data_file,
invalid_form,
load_dataframes,
mo,
):
mo.stop(
invalid_form(configuration_form),
mo.md("**Submit the form to continue.**").center(),
)
embedding_service = LLamafileEmbeddingService("http://localhost:8080/embedding")
mo.stop(
not embedding_service.is_working(),
mo.md("**Cannot access embedding server.**"),
)
# choose what to read from cache
cached_embeddings = configuration_form.value["offline_mode"]
dataframes = load_dataframes(dataframes_data_file)
mo.stop(dataframes is None, mo.md("**Issues loading dataframes**"))
return cached_embeddings, dataframes, embedding_service
@app.cell
def _(dataframes, mo):
mo.stop(dataframes is None)
mo.md(f"""
### Calculating embeddings for the downloaded timeline{"s" if len(dataframes.keys())>1 else ""}.
""").center()
return
@app.cell
def _(
build_cache_embeddings,
cached_embeddings,
dataframes,
embedding_service,
embeddings_data_file,
mo,
):
# calculate embeddings
embeddings = build_cache_embeddings(
embedding_service, dataframes, cached_embeddings, embeddings_data_file
)
mo.stop(embeddings is None, mo.md("**Issues calculating embeddings**"))
return (embeddings,)
@app.cell
def _(TSNE, alt, dataframes, embeddings, mo, np, pd):
def tsne(dataframes, embeddings, perplexity, random_state=42):
"""Runs dimensionality reduction using TSNE on the input embeddings.
Returns dataframes containing status id, text, and 2D coordinates
for plotting.
"""
tsne = TSNE(n_components=2, random_state=random_state, perplexity=perplexity)
all_embeddings = np.concatenate([v for v in embeddings.values()])
all_projections = tsne.fit_transform(all_embeddings)
dfs = []
start_idx = 0
end_idx = 0
for kk in embeddings:
end_idx += len(embeddings[kk])
df = dataframes[kk]
df["x"] = all_projections[start_idx:end_idx, 0]
df["y"] = all_projections[start_idx:end_idx, 1]
df["label"] = kk
dfs.append(df)
start_idx = end_idx
return pd.concat(dfs, ignore_index=True), all_embeddings
df_, all_embeddings = tsne(dataframes, embeddings, perplexity=4)
chart = mo.ui.altair_chart(
alt.Chart(df_, title="Timeline Visualization", height=500)
.mark_point()
.encode(x="x", y="y", color="label")
)
return all_embeddings, chart, df_, tsne
@app.cell
def _(chart, mo):
mo.vstack(
[
mo.md("# Embeddings visualization").center(),
mo.md("""
In this section, you can see posts from different timelines represented as points on a plane:
You can click on a timeline label on the top right to highlight only posts from that timeline.
If you select one or more points, you will see them in the table below the plot.
By clicking on the column names (e.g. `label`, `text`) you can sort them, wrap text (to see full
post contents), or search their content.
"""),
chart,
chart.value[["id", "label", "text"]]
if len(chart.value) > 0
else chart.value,
]
)
return
@app.cell
def _(embeddings, mo, query_form):
mo.stop(embeddings is None)
mo.vstack(
[
mo.md("# Timeline search"),
mo.md("""
Here you can search for the most similar posts to a given one.
You can either provide a row id (the leftmost column in the previous table) to refer to an existing post,
or freeform text to look for posts which are similar in content to what you wrote. Some examples:
- Book suggestions for scifi lovers
- Digital rights and free software
- Recipes for vegetarians (warning: sadly you won't get recipes from this dataset!)
- I like retrocomputing but also bouldering, now what?
"""),
query_form,
]
)
return
@app.cell
def _(SearchService, all_embeddings, df_, embedding_service, query_form):
search_service = SearchService(all_embeddings, embedding_service)
indices = search_service.most_similar_indices(query_form.value)
df_.iloc[indices][["label", "text"]]
return indices, search_service
@app.cell
def _(embeddings, mo, rerank_form):
mo.stop(embeddings is None)
mo.vstack(
[
mo.md("# Timeline Re-ranking"),
mo.md("""
In the previous sections, you saw that embeddings are reasonable descriptors for social media posts,
as they allow semantic similar statuses to be close in the embedding space. This allows you to use
the simple concept of *distance between points* to group statuses and search them.
In this section, you will perform actual timeline re-ranking. To do this, you'll still rely on the
concept of text similarity, assigning a higher score to those posts which are most similar to *a set
of other posts*. The set you'll use as a reference is the one of the posts you wrote or
reposted from others.
**NOTE**: For the sake of this open demo, the posts are not the ones *you* wrote, but I provided a subset of
those posted by https://fosstodon.org/@mala (that's me!). This way, you can get a better sense of
how this would work with some real data rather than a fully synthetic dataset.
"""),
rerank_form,
]
)
return
@app.cell
def _(
dataframes,
embedding_service,
embeddings,
load_dataframes,
mo,
np,
rerank_form,
time,
user_statuses_data_file,
):
mo.stop(embeddings is None)
# check for anything invalid in the form
mo.stop(rerank_form.value is None, mo.md("**Submit the form to continue.**"))
timeline_to_rerank = rerank_form.value["timeline_to_rerank"]
user_statuses_df = load_dataframes(user_statuses_data_file)[
: 20 * rerank_form.value["num_user_status_pages"]
]
mo.stop(user_statuses_df is None, mo.md("**Issues loading dataframes**"))
user_statuses_embeddings = embedding_service.calculate_embeddings(
user_statuses_df["text"]
)
# build an index of most similar statuses to the ones
# published / boosted by the user
rerank_start_time = time.time()
# index is in reverse order (from largest to smallest similarity)
idx = np.flip(
# return indices of the sorted list, instead of values
# we want to get pointers to statuses, not actual similarities
np.argsort(
# to measure how much I might like a timeline status,
# I sum all the similarity values calculated between
# that status and all the statuses in my feed
np.sum(
# dot product is a decent quick'n'dirty way to calculate
# similarity between two vectors (the more similar they
# are, the larger the product)
np.dot(user_statuses_embeddings, embeddings[timeline_to_rerank].T),
axis=0,
)
)
)
print(time.time() - rerank_start_time)
# show everything
mo.vstack(
[
mo.md("""## Your statuses:
This table shows the content of the posts that are used for re-ranking the timeline. You can change
their number in the form above (1 page = 20 posts), check them out here, and verify in the table below
this one how ranking changes depending on the contents you include.
"""),
user_statuses_df,
mo.md("""## Your re-ranked timeline:
This table shows posts from the synthetic timelines (you can choose between home, local, and public
in the form above), re-ranked to prioritize the main topics inferred from the posts in the previous table.
"""),
# show statuses sorted by idx
dataframes[timeline_to_rerank].iloc[idx][["label", "text"]],
]
)
return (
idx,
rerank_start_time,
timeline_to_rerank,
user_statuses_df,
user_statuses_embeddings,
)
@app.cell
def _():
# # Wanna get some intuition re: the similarity measure?
# # Here's a simple example: the seven values you get are
# # the scores for the seven vectors in bbb (the higher
# # they are, the more similar vectors they have in aaa).
# # ... Can you tell why the third vector in bbb ([1,1,0,0])
# # is the most similar to vectors found in aaa?
# aaa = np.array([
# [1,0,0,0],
# [0,1,0,0],
# [0,0,1,0],
# [1,1,0,0],
# ]).astype(np.float32)
# bbb = np.array([
# [1,0,0,0],
# [0,1,0,0],
# [1,1,0,0],
# [0,0,1,0],
# [0,1,1,0],
# [0,0,0,1],
# [0,0,1,1],
# ]).astype(np.float32)
# np.sum(np.dot(aaa, bbb.T), axis=0)
return
@app.cell
def _(mo, rerank_form, tag_form):
mo.stop(rerank_form.value is None)
mo.vstack(
[
mo.md("""
# Re-Ranking your own posts
Depending on the timeline you are considering, it might be more or less hard
to understand how well the re-ranking worked.
To give you a better sense of the effect of re-ranking, let us take the posts
you wrote and re-rank them according to some well-known tag.
Feel free to test the following code with different tags, depending on your
various interests, and see whether your own posts related to a given interest
are surfaced by a related tag.
**NOTE: a couple of changes have been applied for the sake of having a functional demo:**
1. Posts are not actually your own (see above).
2. The word(s) that you enter below will be used to filter the existing posts in the
(synthetic) public timeline, rather than running a new tag search on the mastodon server.
This allows you to still get meaningful posts back without having to connect to an instance.
Some example search terms you could use: `#AI`, `bouldering`, `books`, `scifi`, `retrogaming`, `movies`.
If a search term is not found, you will simply see no results.
"""),
tag_form,
]
)
return
@app.cell
def _(
dataframes,
embedding_service,
mo,
np,
tag_form,
user_statuses_df,
user_statuses_embeddings,
):
tag_name = tag_form.value
tag_posts_df = dataframes["public"][
dataframes["public"]["text"].str.contains(tag_name)
]
tag_posts_embeddings = embedding_service.calculate_embeddings(tag_posts_df["text"])
# calculate the re-ranking index
my_idx = np.flip(
np.argsort(
np.sum(np.dot(tag_posts_embeddings, user_statuses_embeddings.T), axis=0)
)
)
# let us also show the similarity scores used to calculate the index
user_statuses_df["scores"] = np.sum(
np.dot(tag_posts_embeddings, user_statuses_embeddings.T), axis=0
)
mo.vstack(
[
mo.md(
f"### Your own posts, re-ranked according to their similarity to posts in {tag_name}"
),
user_statuses_df.iloc[my_idx][["text", "scores"]],
]
)
# my_posts_df[['text', 'scores']]
return my_idx, tag_name, tag_posts_df, tag_posts_embeddings
@app.cell
def _(mo):
# Create the Configuration form
configuration_form = (
mo.md(
"""
# Configuration
(NOTE: settings will be ignored in this demo, data will be loaded from a file)
**Timelines**
{tl_home} {tl_local} {tl_public}
{tl_hashtag} {tl_hashtag_txt} {tl_list} {tl_list_txt}
**Embeddings**
{emb_server}
{emb_server_url}
{emb_server_model}
**Caching**
{offline_mode}
"""
)
.batch(
tl_home=mo.ui.checkbox(label="Home", value=True),
tl_local=mo.ui.checkbox(label="Local", value=True),
tl_public=mo.ui.checkbox(label="Public", value=True),
tl_hashtag=mo.ui.checkbox(label="Hashtag"),
tl_list=mo.ui.checkbox(label="List"),
tl_hashtag_txt=mo.ui.text(),
tl_list_txt=mo.ui.text(),
emb_server=mo.ui.radio(
label="Server type:",
options=["llamafile", "ollama"],
value="llamafile",
inline=True,
),
emb_server_url=mo.ui.text(
label="Embedding server URL:",
value="http://localhost:8080/embedding",
full_width=True,
),
emb_server_model=mo.ui.text(
label="Embedding server model:", value="all-minilm"
),
offline_mode=mo.ui.checkbox(label="Run in offline mode (experimental)"),
)
.form(show_clear_button=True, bordered=True)
)
# a dictionary mapping Timeline UI checkboxes with the respective
# strings that identify them in the Mastodon API
timelines_dict = {
"tl_home": "home",
"tl_local": "local",
"tl_public": "public",
"tl_hashtag": "tag",
"tl_list": "list",
}
def invalid_form(form):
"""A form (e.g. login) is invalid if it has no value,
or if any of its keys have no value."""
if form.value is None:
return True
for k in form.value.keys():
if form.value[k] is None:
return True
return False
return configuration_form, invalid_form, timelines_dict
@app.cell
def _(mo):
# Create a form for timeline re-ranking
rerank_form = (
mo.md(
"""
# Re-ranking settings
**User statuses** (NOTE: data will be loaded from a file)
{num_user_status_pages} {exclude_reblogs}
**Timeline to rerank**
{timeline_to_rerank}
"""
)
.batch(
num_user_status_pages=mo.ui.slider(
start=1, stop=20, label="Number of pages to load", value=1
),
timeline_to_rerank=mo.ui.radio(
options=["home", "local", "public"], value="public"
),
exclude_reblogs=mo.ui.checkbox(label="Exclude reblogs", value=True),
)
.form(show_clear_button=True, bordered=True)
)
return (rerank_form,)
@app.cell
def _(mo):
query_form = mo.ui.text(
value="42",
label="Enter a status id or some free-form text to find the most similar statuses:\n",
full_width=True,
)
return (query_form,)
@app.cell
def _(mo):
tag_form = mo.ui.text(
value="retrogaming",
label="Enter a tag name:\n",
)
return (tag_form,)
@app.cell
def _(BeautifulSoup, EmbeddingService, mo, pickle, time):
def load_dataframes(data_file):
dataframes = None
print(f"Loading cached dataframes from {data_file}")
try:
with open(data_file, "rb") as f:
dataframes = pickle.load(f)
except FileNotFoundError:
print(f"File {data_file} not found.")
return dataframes
def build_cache_embeddings(
embedding_service: EmbeddingService, # type: ignore
dataframes: dict[str, any],
cached: bool,
embeddings_data_file: str,
) -> dict[str, any]:
"""Given a dictionary with dataframes from different timelines,
return another dictionary that contains, for each timeline, the
respective embeddings calculated with the provided embedding service.
If cached==True, the `embeddings_data_file` file will be loaded.
"""
if not cached:
embeddings = {}
for k in dataframes:
with mo.status.progress_bar(
total=len(dataframes[k]), title=f"Embedding posts from: {k}"
) as bar:
print(f"Embedding statuses from timeline: {k}")
tt_ = time.time()
embeddings[k] = embedding_service.calculate_embeddings(
dataframes[k]["text"], bar
)
print(time.time() - tt_)
with open(embeddings_data_file, "wb") as f:
pickle.dump(embeddings, f)
else:
print(f"Loading cached embeddings from {embeddings_data_file}")
try:
with open(embeddings_data_file, "rb") as f:
embeddings = pickle.load(f)
except FileNotFoundError:
print(f"File {embeddings_data_file} not found.")
return None
return embeddings
def get_compact_data(paginated_data: list) -> list[tuple[int, str]]:
"""Extract compact (id, text) pairs from a paginated list of statuses."""
compact_data = []
for page in paginated_data:
for toot in page:
id = toot.id
cont = toot.content
if toot.reblog:
id = toot.reblog.id
cont = toot.reblog.content
soup = BeautifulSoup(cont, features="html.parser")
# print(f"{id}: {soup.get_text()}")
compact_data.append((id, soup.get_text()))
return compact_data
return build_cache_embeddings, get_compact_data, load_dataframes
@app.cell
def _():
return
if __name__ == "__main__":
app.run()
|