Spaces:
Running
on
Zero
Running
on
Zero
Update to latest
Browse files
app.py
CHANGED
@@ -1,31 +1,81 @@
|
|
|
|
1 |
from typing import Tuple
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline, Pipeline
|
|
|
|
|
4 |
|
5 |
from speech_to_text_finetune.config import LANGUAGES_NAME_TO_ID
|
6 |
|
7 |
languages = LANGUAGES_NAME_TO_ID.keys()
|
8 |
model_ids = [
|
9 |
-
"
|
10 |
-
"kostissz/whisper-tiny-gl",
|
11 |
-
"kostissz/whisper-tiny-el",
|
12 |
"openai/whisper-tiny",
|
13 |
"openai/whisper-small",
|
14 |
"openai/whisper-medium",
|
|
|
|
|
15 |
]
|
16 |
|
17 |
|
18 |
-
def
|
19 |
-
if
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
else:
|
28 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def transcribe(pipe: Pipeline, audio: gr.Audio) -> str:
|
@@ -37,18 +87,34 @@ def setup_gradio_demo():
|
|
37 |
with gr.Blocks() as demo:
|
38 |
gr.Markdown(
|
39 |
""" # 🗣️ Speech-to-Text Transcription
|
40 |
-
### 1. Select a
|
41 |
-
### 2.
|
42 |
-
### 3.
|
|
|
43 |
"""
|
44 |
)
|
45 |
-
###
|
46 |
-
|
47 |
-
choices=model_ids, value=None, label="Select a model"
|
48 |
-
)
|
49 |
selected_lang = gr.Dropdown(
|
50 |
choices=list(languages), value=None, label="Select a language"
|
51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
load_model_button = gr.Button("Load model")
|
53 |
model_loaded = gr.Markdown()
|
54 |
|
@@ -63,7 +129,7 @@ def setup_gradio_demo():
|
|
63 |
model = gr.State()
|
64 |
load_model_button.click(
|
65 |
fn=load_model,
|
66 |
-
inputs=[dropdown_model,
|
67 |
outputs=[model, model_loaded],
|
68 |
)
|
69 |
|
|
|
1 |
+
from pathlib import Path
|
2 |
from typing import Tuple
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline, Pipeline
|
5 |
+
from huggingface_hub import repo_exists
|
6 |
+
|
7 |
|
8 |
from speech_to_text_finetune.config import LANGUAGES_NAME_TO_ID
|
9 |
|
10 |
languages = LANGUAGES_NAME_TO_ID.keys()
|
11 |
model_ids = [
|
12 |
+
"",
|
|
|
|
|
13 |
"openai/whisper-tiny",
|
14 |
"openai/whisper-small",
|
15 |
"openai/whisper-medium",
|
16 |
+
"openai/whisper-large-v3",
|
17 |
+
"openai/whisper-large-v3-turbo",
|
18 |
]
|
19 |
|
20 |
|
21 |
+
def _load_local_model(model_dir: str, language: str) -> Tuple[Pipeline | None, str]:
|
22 |
+
if not Path(model_dir).is_dir():
|
23 |
+
return None, f"⚠️ Couldn't find local model directory: {model_dir}"
|
24 |
+
from transformers import (
|
25 |
+
WhisperProcessor,
|
26 |
+
WhisperTokenizer,
|
27 |
+
WhisperFeatureExtractor,
|
28 |
+
WhisperForConditionalGeneration,
|
29 |
+
)
|
30 |
+
|
31 |
+
processor = WhisperProcessor.from_pretrained(model_dir)
|
32 |
+
tokenizer = WhisperTokenizer.from_pretrained(
|
33 |
+
model_dir, language=language, task="transcribe"
|
34 |
+
)
|
35 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
|
36 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
|
37 |
+
|
38 |
+
return pipeline(
|
39 |
+
task="automatic-speech-recognition",
|
40 |
+
model=model,
|
41 |
+
processor=processor,
|
42 |
+
tokenizer=tokenizer,
|
43 |
+
feature_extractor=feature_extractor,
|
44 |
+
), f"✅ Local model has been loaded from {model_dir}."
|
45 |
+
|
46 |
+
|
47 |
+
def _load_hf_model(model_repo_id: str, language: str) -> Tuple[Pipeline | None, str]:
|
48 |
+
if not repo_exists(model_repo_id):
|
49 |
+
return (
|
50 |
+
None,
|
51 |
+
f"⚠️ Couldn't find {model_repo_id} on Hugging Face. If its a private repo, make sure you are logged in locally.",
|
52 |
)
|
53 |
+
return pipeline(
|
54 |
+
"automatic-speech-recognition",
|
55 |
+
model=model_repo_id,
|
56 |
+
generate_kwargs={"language": language},
|
57 |
+
), f"✅ HF Model {model_repo_id} has been loaded."
|
58 |
+
|
59 |
+
|
60 |
+
def load_model(
|
61 |
+
language: str, dropdown_model_id: str, hf_model_id: str, local_model_id: str
|
62 |
+
) -> Tuple[Pipeline, str]:
|
63 |
+
if dropdown_model_id and not hf_model_id and not local_model_id:
|
64 |
+
yield None, f"Loading {dropdown_model_id}..."
|
65 |
+
yield _load_hf_model(dropdown_model_id, language)
|
66 |
+
elif hf_model_id and not local_model_id and not dropdown_model_id:
|
67 |
+
yield None, f"Loading {hf_model_id}..."
|
68 |
+
yield _load_hf_model(hf_model_id, language)
|
69 |
+
elif local_model_id and not hf_model_id and not dropdown_model_id:
|
70 |
+
yield None, f"Loading {local_model_id}..."
|
71 |
+
yield _load_local_model(local_model_id, language)
|
72 |
else:
|
73 |
+
yield (
|
74 |
+
None,
|
75 |
+
"️️⚠️ Please select or fill at least and only one of the three options above",
|
76 |
+
)
|
77 |
+
if not language:
|
78 |
+
yield None, "⚠️ Please select a language from the dropdown"
|
79 |
|
80 |
|
81 |
def transcribe(pipe: Pipeline, audio: gr.Audio) -> str:
|
|
|
87 |
with gr.Blocks() as demo:
|
88 |
gr.Markdown(
|
89 |
""" # 🗣️ Speech-to-Text Transcription
|
90 |
+
### 1. Select a language from the dropdown menu.
|
91 |
+
### 2. Select which model to load from one of the 3 options
|
92 |
+
### 3. Load the model by clicking the Load model button.
|
93 |
+
### 4. Record a message and click Transcribe to see the transcription.
|
94 |
"""
|
95 |
)
|
96 |
+
### Language & Model selection ###
|
97 |
+
|
|
|
|
|
98 |
selected_lang = gr.Dropdown(
|
99 |
choices=list(languages), value=None, label="Select a language"
|
100 |
)
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column():
|
104 |
+
dropdown_model = gr.Dropdown(
|
105 |
+
choices=model_ids, label="Option 1: Select a model"
|
106 |
+
)
|
107 |
+
with gr.Column():
|
108 |
+
user_model = gr.Textbox(
|
109 |
+
label="Option 2: Paste HF model id",
|
110 |
+
placeholder="my-username/my-whisper-tiny",
|
111 |
+
)
|
112 |
+
with gr.Column():
|
113 |
+
local_model = gr.Textbox(
|
114 |
+
label="Option 3: Paste local path to model directory",
|
115 |
+
placeholder="artifacts/my-whisper-tiny",
|
116 |
+
)
|
117 |
+
|
118 |
load_model_button = gr.Button("Load model")
|
119 |
model_loaded = gr.Markdown()
|
120 |
|
|
|
129 |
model = gr.State()
|
130 |
load_model_button.click(
|
131 |
fn=load_model,
|
132 |
+
inputs=[selected_lang, dropdown_model, user_model, local_model],
|
133 |
outputs=[model, model_loaded],
|
134 |
)
|
135 |
|