kostissz commited on
Commit
5e6ab01
·
unverified ·
1 Parent(s): 8bbb796

Update to latest

Browse files
Files changed (1) hide show
  1. app.py +86 -20
app.py CHANGED
@@ -1,31 +1,81 @@
 
1
  from typing import Tuple
2
  import gradio as gr
3
  from transformers import pipeline, Pipeline
 
 
4
 
5
  from speech_to_text_finetune.config import LANGUAGES_NAME_TO_ID
6
 
7
  languages = LANGUAGES_NAME_TO_ID.keys()
8
  model_ids = [
9
- "kostissz/whisper-small-el",
10
- "kostissz/whisper-tiny-gl",
11
- "kostissz/whisper-tiny-el",
12
  "openai/whisper-tiny",
13
  "openai/whisper-small",
14
  "openai/whisper-medium",
 
 
15
  ]
16
 
17
 
18
- def load_model(model_id: str, language: str) -> Tuple[Pipeline, str]:
19
- if model_id and language:
20
- yield None, f"Loading {model_id}..."
21
- pipe = pipeline(
22
- "automatic-speech-recognition",
23
- model=model_id,
24
- generate_kwargs={"language": language},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  )
26
- yield pipe, f"✅ Model {model_id} has been loaded."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  else:
28
- yield None, "⚠️ Please select a model and a language from the dropdown"
 
 
 
 
 
29
 
30
 
31
  def transcribe(pipe: Pipeline, audio: gr.Audio) -> str:
@@ -37,18 +87,34 @@ def setup_gradio_demo():
37
  with gr.Blocks() as demo:
38
  gr.Markdown(
39
  """ # 🗣️ Speech-to-Text Transcription
40
- ### 1. Select a model and a language from the dropdowns.
41
- ### 2. Load the model by clicking the Load model button.
42
- ### 3. Record a message and click Transcribe to see the transcription.
 
43
  """
44
  )
45
- ### Model & Language selection ###
46
- dropdown_model = gr.Dropdown(
47
- choices=model_ids, value=None, label="Select a model"
48
- )
49
  selected_lang = gr.Dropdown(
50
  choices=list(languages), value=None, label="Select a language"
51
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  load_model_button = gr.Button("Load model")
53
  model_loaded = gr.Markdown()
54
 
@@ -63,7 +129,7 @@ def setup_gradio_demo():
63
  model = gr.State()
64
  load_model_button.click(
65
  fn=load_model,
66
- inputs=[dropdown_model, selected_lang],
67
  outputs=[model, model_loaded],
68
  )
69
 
 
1
+ from pathlib import Path
2
  from typing import Tuple
3
  import gradio as gr
4
  from transformers import pipeline, Pipeline
5
+ from huggingface_hub import repo_exists
6
+
7
 
8
  from speech_to_text_finetune.config import LANGUAGES_NAME_TO_ID
9
 
10
  languages = LANGUAGES_NAME_TO_ID.keys()
11
  model_ids = [
12
+ "",
 
 
13
  "openai/whisper-tiny",
14
  "openai/whisper-small",
15
  "openai/whisper-medium",
16
+ "openai/whisper-large-v3",
17
+ "openai/whisper-large-v3-turbo",
18
  ]
19
 
20
 
21
+ def _load_local_model(model_dir: str, language: str) -> Tuple[Pipeline | None, str]:
22
+ if not Path(model_dir).is_dir():
23
+ return None, f"⚠️ Couldn't find local model directory: {model_dir}"
24
+ from transformers import (
25
+ WhisperProcessor,
26
+ WhisperTokenizer,
27
+ WhisperFeatureExtractor,
28
+ WhisperForConditionalGeneration,
29
+ )
30
+
31
+ processor = WhisperProcessor.from_pretrained(model_dir)
32
+ tokenizer = WhisperTokenizer.from_pretrained(
33
+ model_dir, language=language, task="transcribe"
34
+ )
35
+ feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
36
+ model = WhisperForConditionalGeneration.from_pretrained(model_dir)
37
+
38
+ return pipeline(
39
+ task="automatic-speech-recognition",
40
+ model=model,
41
+ processor=processor,
42
+ tokenizer=tokenizer,
43
+ feature_extractor=feature_extractor,
44
+ ), f"✅ Local model has been loaded from {model_dir}."
45
+
46
+
47
+ def _load_hf_model(model_repo_id: str, language: str) -> Tuple[Pipeline | None, str]:
48
+ if not repo_exists(model_repo_id):
49
+ return (
50
+ None,
51
+ f"⚠️ Couldn't find {model_repo_id} on Hugging Face. If its a private repo, make sure you are logged in locally.",
52
  )
53
+ return pipeline(
54
+ "automatic-speech-recognition",
55
+ model=model_repo_id,
56
+ generate_kwargs={"language": language},
57
+ ), f"✅ HF Model {model_repo_id} has been loaded."
58
+
59
+
60
+ def load_model(
61
+ language: str, dropdown_model_id: str, hf_model_id: str, local_model_id: str
62
+ ) -> Tuple[Pipeline, str]:
63
+ if dropdown_model_id and not hf_model_id and not local_model_id:
64
+ yield None, f"Loading {dropdown_model_id}..."
65
+ yield _load_hf_model(dropdown_model_id, language)
66
+ elif hf_model_id and not local_model_id and not dropdown_model_id:
67
+ yield None, f"Loading {hf_model_id}..."
68
+ yield _load_hf_model(hf_model_id, language)
69
+ elif local_model_id and not hf_model_id and not dropdown_model_id:
70
+ yield None, f"Loading {local_model_id}..."
71
+ yield _load_local_model(local_model_id, language)
72
  else:
73
+ yield (
74
+ None,
75
+ "️️⚠️ Please select or fill at least and only one of the three options above",
76
+ )
77
+ if not language:
78
+ yield None, "⚠️ Please select a language from the dropdown"
79
 
80
 
81
  def transcribe(pipe: Pipeline, audio: gr.Audio) -> str:
 
87
  with gr.Blocks() as demo:
88
  gr.Markdown(
89
  """ # 🗣️ Speech-to-Text Transcription
90
+ ### 1. Select a language from the dropdown menu.
91
+ ### 2. Select which model to load from one of the 3 options
92
+ ### 3. Load the model by clicking the Load model button.
93
+ ### 4. Record a message and click Transcribe to see the transcription.
94
  """
95
  )
96
+ ### Language & Model selection ###
97
+
 
 
98
  selected_lang = gr.Dropdown(
99
  choices=list(languages), value=None, label="Select a language"
100
  )
101
+
102
+ with gr.Row():
103
+ with gr.Column():
104
+ dropdown_model = gr.Dropdown(
105
+ choices=model_ids, label="Option 1: Select a model"
106
+ )
107
+ with gr.Column():
108
+ user_model = gr.Textbox(
109
+ label="Option 2: Paste HF model id",
110
+ placeholder="my-username/my-whisper-tiny",
111
+ )
112
+ with gr.Column():
113
+ local_model = gr.Textbox(
114
+ label="Option 3: Paste local path to model directory",
115
+ placeholder="artifacts/my-whisper-tiny",
116
+ )
117
+
118
  load_model_button = gr.Button("Load model")
119
  model_loaded = gr.Markdown()
120
 
 
129
  model = gr.State()
130
  load_model_button.click(
131
  fn=load_model,
132
+ inputs=[selected_lang, dropdown_model, user_model, local_model],
133
  outputs=[model, model_loaded],
134
  )
135