Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification | |
from PIL import Image, ImageDraw, ImageFont | |
from utils import OCR, unnormalize_box | |
label_list = [ | |
"O", | |
"B-MENU.CNT", | |
"B-MENU.DISCOUNTPRICE", | |
"B-MENU.NM", | |
"B-MENU.NUM", | |
"B-MENU.PRICE", | |
"B-MENU.SUB.CNT", | |
"B-MENU.SUB.NM", | |
"B-MENU.SUB.PRICE", | |
"B-MENU.UNITPRICE", | |
"B-SUB_TOTAL.DISCOUNT_PRICE", | |
"B-SUB_TOTAL.ETC", | |
"B-SUB_TOTAL.SERVICE_PRICE", | |
"B-SUB_TOTAL.SUBTOTAL_PRICE", | |
"B-SUB_TOTAL.TAX_PRICE", | |
"B-TOTAL.CASHPRICE", | |
"B-TOTAL.CHANGEPRICE", | |
"B-TOTAL.CREDITCARDPRICE", | |
"B-TOTAL.MENUQTY_CNT", | |
"B-TOTAL.TOTAL_PRICE", | |
"I-MENU.CNT", | |
"I-MENU.DISCOUNTPRICE", | |
"I-MENU.NM", | |
"I-MENU.NUM", | |
"I-MENU.PRICE", | |
"I-MENU.SUB.CNT", | |
"I-MENU.SUB.NM", | |
"I-MENU.SUB.PRICE", | |
"I-MENU.UNITPRICE", | |
"I-SUB_TOTAL.DISCOUNT_PRICE", | |
"I-SUB_TOTAL.ETC", | |
"I-SUB_TOTAL.SERVICE_PRICE", | |
"I-SUB_TOTAL.SUBTOTAL_PRICE", | |
"I-SUB_TOTAL.TAX_PRICE", | |
"I-TOTAL.CASHPRICE", | |
"I-TOTAL.CHANGEPRICE", | |
"I-TOTAL.CREDITCARDPRICE", | |
"I-TOTAL.MENUQTY_CNT", | |
"I-TOTAL.TOTAL_PRICE" | |
] | |
id2label = dict(enumerate(label_list)) | |
label2id = {v: k for k, v in enumerate(label_list)} | |
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-finetuned-cord", apply_ocr=False) | |
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-finetuned-cord", apply_ocr=False) | |
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-finetuned-cord") | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device) | |
def prediction(image): | |
boxes, words = OCR(image) | |
encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True) | |
offset_mapping = encoding.pop('offset_mapping') | |
for k, v in encoding.items(): | |
encoding[k] = v.to(device) | |
outputs = model(**encoding) | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
probabilities = torch.softmax(outputs.logits, dim=-1) | |
confidence_scores = probabilities.max(-1).values.squeeze().tolist() | |
inp_ids = encoding.input_ids.squeeze().tolist() | |
inp_words = [tokenizer.decode(i) for i in inp_ids] | |
width, height = image.size | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 | |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
true_confidence_scores = [confidence_scores[idx] for idx, conf in enumerate(confidence_scores) if not is_subword[idx]] | |
true_words = [] | |
for id, i in enumerate(inp_words): | |
if not is_subword[id]: | |
true_words.append(i) | |
else: | |
true_words[-1] = true_words[-1]+i | |
true_predictions = true_predictions[1:-1] | |
true_boxes = true_boxes[1:-1] | |
true_words = true_words[1:-1] | |
true_confidence_scores = true_confidence_scores[1:-1] | |
for i, conf in enumerate(true_confidence_scores): | |
if conf < 0.6 : | |
true_predictions[i] = "O" | |
d = {} | |
for id, i in enumerate(true_predictions): | |
if i not in d.keys(): | |
d[i] = true_words[id] | |
else: | |
d[i] = d[i] + ", " + true_words[id] | |
d = {k: v.strip() for (k, v) in d.items()} | |
d.pop("O") | |
# TODO:process the json | |
draw = ImageDraw.Draw(image, "RGBA") | |
font = ImageFont.load_default() | |
for prediction, box, confidence in zip(true_predictions, true_boxes, true_confidence_scores): | |
draw.rectangle(box) | |
draw.text((box[0]+10, box[1]-10), text=prediction+ ", "+ str(confidence), font=font, fill="black", font_size="15") | |
return d, image | |