File size: 1,210 Bytes
6353a8a
3fda4ee
 
 
 
9a891af
fc77b97
3fda4ee
 
 
fc77b97
 
3fda4ee
 
51397d8
8683ec6
3fda4ee
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from inference import prediction
import gradio as gr
import json

title = "Interactive demo: LayoutLMv3 for receipts"
description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. This particular space uses two instances of the model, one fine-tuned on CORD and the other SROIE.\n It firsts uses the fine-tune on SROIE to extract date, company and address, then the fine-tune on CORD for the other info. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
examples = [['image.jpeg'],['image.png']]

css = """.output_image, .input_image {height: 600px !important}"""

# gradio interface that takes in input an image and return a JSON file that contains its info
# for now it shows also the intermediate steps
iface = gr.Interface(fn=prediction,
                     inputs=gr.Image(type="pil"),
                     outputs=[gr.Image(type="pil", label="annotated image"),
                              gr.JSON(label="final output")],
                     title=title,
                     description=description,
                     examples=examples,
                     css=css)

iface.launch()