LayoutLMv3_for_recepits2 / sroie_inference.py
mp-02's picture
Update sroie_inference.py
98c2996 verified
raw
history blame
3.68 kB
import torch
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from utils import OCR, unnormalize_box
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-finetuned-sroie", apply_ocr=False)
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-finetuned-sroie", apply_ocr=False)
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-finetuned-sroie")
id2label = model.config.id2label
label2id = model.config.label2id
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
def blur(image, boxes):
image = np.array(image)
for box in boxes:
blur_x = int(box[0])
blur_y = int(box[1])
blur_width = int(box[2]-box[0])
blur_height = int(box[3]-box[1])
roi = image[blur_y:blur_y + blur_height, blur_x:blur_x + blur_width]
blur_image = cv2.GaussianBlur(roi, (201, 201), 0)
image[blur_y:blur_y + blur_height, blur_x:blur_x + blur_width] = blur_image
return Image.fromarray(image, 'RGB')
def prediction(image):
boxes, words = OCR(image)
encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True)
offset_mapping = encoding.pop('offset_mapping')
for k, v in encoding.items():
encoding[k] = v.to(device)
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
probabilities = torch.softmax(outputs.logits, dim=-1)
confidence_scores = probabilities.max(-1).values.squeeze().tolist()
inp_ids = encoding.input_ids.squeeze().tolist()
inp_words = [tokenizer.decode(i) for i in inp_ids]
width, height = image.size
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
true_confidence_scores = [confidence_scores[idx] for idx, conf in enumerate(confidence_scores) if not is_subword[idx]]
true_words = []
for id, i in enumerate(inp_words):
if not is_subword[id]:
true_words.append(i)
else:
true_words[-1] = true_words[-1]+i
true_predictions = true_predictions[1:-1]
true_boxes = true_boxes[1:-1]
true_words = true_words[1:-1]
true_confidence_scores = true_confidence_scores[1:-1]
#for i, j in enumerate(true_confidence_scores):
# if j < 0.8: #####################################
# true_predictions[i] = "O"
d = {}
for id, i in enumerate(true_predictions):
#rimuovo i prefissi
if i != "O":
i = i[2:]
if i not in d.keys():
d[i] = true_words[id]
else:
d[i] = d[i] + ", " + true_words[id]
d = {k: v.strip() for (k, v) in d.items()}
if "O" in d: d.pop("O")
if "TOTAL" in d: d.pop("TOTAL")
blur_boxes = []
for prediction, box in zip(true_predictions, true_boxes):
if prediction != 'O' and prediction != 'TOTAL':
blur_boxes.append(box)
image = (blur(image, blur_boxes))
#draw = ImageDraw.Draw(image, "RGBA")
#font = ImageFont.load_default()
#for prediction, box in zip(true_predictions, true_boxes):
# draw.rectangle(box)
# draw.text((box[0]+10, box[1]-10), text=prediction, font=font, fill="black", font_size="8")
return d, image