Spaces:
Sleeping
Sleeping
Update cord_inference.py
Browse files- cord_inference.py +80 -80
cord_inference.py
CHANGED
@@ -1,80 +1,80 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
4 |
-
from PIL import Image, ImageDraw, ImageFont
|
5 |
-
from utils import OCR, unnormalize_box
|
6 |
-
|
7 |
-
|
8 |
-
labels = ["O", "B-MENU.NM", "B-MENU.NUM", "B-MENU.UNITPRICE", "B-MENU.CNT", "B-MENU.DISCOUNTPRICE", "B-MENU.PRICE", "B-MENU.ITEMSUBTOTAL", "B-MENU.VATYN", "B-MENU.ETC", "B-MENU.SUB.NM", "B-MENU.SUB.UNITPRICE", "B-MENU.SUB.CNT", "B-MENU.SUB.PRICE", "B-MENU.SUB.ETC", "B-VOID_MENU.NM", "B-VOID_MENU.PRICE", "B-SUB_TOTAL.SUBTOTAL_PRICE", "B-SUB_TOTAL.DISCOUNT_PRICE", "B-SUB_TOTAL.SERVICE_PRICE", "B-SUB_TOTAL.OTHERSVC_PRICE", "B-SUB_TOTAL.TAX_PRICE", "B-SUB_TOTAL.ETC", "B-TOTAL.TOTAL_PRICE", "B-TOTAL.TOTAL_ETC", "B-TOTAL.CASHPRICE", "B-TOTAL.CHANGEPRICE", "B-TOTAL.CREDITCARDPRICE", "B-TOTAL.EMONEYPRICE", "B-TOTAL.MENUTYPE_CNT", "B-TOTAL.MENUQTY_CNT", "I-MENU.NM", "I-MENU.NUM", "I-MENU.UNITPRICE", "I-MENU.CNT", "I-MENU.DISCOUNTPRICE", "I-MENU.PRICE", "I-MENU.ITEMSUBTOTAL", "I-MENU.VATYN", "I-MENU.ETC", "I-MENU.SUB.NM", "I-MENU.SUB.UNITPRICE", "I-MENU.SUB.CNT", "I-MENU.SUB.PRICE", "I-MENU.SUB.ETC", "I-VOID_MENU.NM", "I-VOID_MENU.PRICE", "I-SUB_TOTAL.SUBTOTAL_PRICE", "I-SUB_TOTAL.DISCOUNT_PRICE", "I-SUB_TOTAL.SERVICE_PRICE", "I-SUB_TOTAL.OTHERSVC_PRICE", "I-SUB_TOTAL.TAX_PRICE", "I-SUB_TOTAL.ETC", "I-TOTAL.TOTAL_PRICE", "I-TOTAL.TOTAL_ETC", "I-TOTAL.CASHPRICE", "I-TOTAL.CHANGEPRICE", "I-TOTAL.CREDITCARDPRICE", "I-TOTAL.EMONEYPRICE", "I-TOTAL.MENUTYPE_CNT", "I-TOTAL.MENUQTY_CNT"]
|
9 |
-
id2label = {v: k for v, k in enumerate(labels)}
|
10 |
-
label2id = {k: v for v, k in enumerate(labels)}
|
11 |
-
|
12 |
-
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-finetuned-
|
13 |
-
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-finetuned-
|
14 |
-
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-finetuned-
|
15 |
-
|
16 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
-
model.to(device)
|
18 |
-
|
19 |
-
|
20 |
-
def prediction(image):
|
21 |
-
boxes, words = OCR(image)
|
22 |
-
encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True)
|
23 |
-
offset_mapping = encoding.pop('offset_mapping')
|
24 |
-
|
25 |
-
for k, v in encoding.items():
|
26 |
-
encoding[k] = v.to(device)
|
27 |
-
|
28 |
-
outputs = model(**encoding)
|
29 |
-
|
30 |
-
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
31 |
-
token_boxes = encoding.bbox.squeeze().tolist()
|
32 |
-
|
33 |
-
inp_ids = encoding.input_ids.squeeze().tolist()
|
34 |
-
inp_words = [tokenizer.decode(i) for i in inp_ids]
|
35 |
-
|
36 |
-
width, height = image.size
|
37 |
-
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
|
38 |
-
|
39 |
-
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
40 |
-
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
41 |
-
true_words = []
|
42 |
-
|
43 |
-
for id, i in enumerate(inp_words):
|
44 |
-
if not is_subword[id]:
|
45 |
-
true_words.append(i)
|
46 |
-
else:
|
47 |
-
true_words[-1] = true_words[-1]+i
|
48 |
-
|
49 |
-
true_predictions = true_predictions[1:-1]
|
50 |
-
true_boxes = true_boxes[1:-1]
|
51 |
-
true_words = true_words[1:-1]
|
52 |
-
|
53 |
-
preds = []
|
54 |
-
l_words = []
|
55 |
-
bboxes = []
|
56 |
-
|
57 |
-
for i, j in enumerate(true_predictions):
|
58 |
-
if j != 'others':
|
59 |
-
preds.append(true_predictions[i])
|
60 |
-
l_words.append(true_words[i])
|
61 |
-
bboxes.append(true_boxes[i])
|
62 |
-
|
63 |
-
d = {}
|
64 |
-
for id, i in enumerate(preds):
|
65 |
-
if i not in d.keys():
|
66 |
-
d[i] = l_words[id]
|
67 |
-
else:
|
68 |
-
d[i] = d[i] + ", " + l_words[id]
|
69 |
-
d = {k: v.strip() for (k, v) in d.items()}
|
70 |
-
|
71 |
-
# TODO: process the json
|
72 |
-
|
73 |
-
draw = ImageDraw.Draw(image, "RGBA")
|
74 |
-
font = ImageFont.load_default()
|
75 |
-
|
76 |
-
for prediction, box in zip(preds, bboxes):
|
77 |
-
draw.rectangle(box)
|
78 |
-
draw.text((box[0]+10, box[1]-10), text=prediction, font=font, fill="black")
|
79 |
-
|
80 |
-
return d, image
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
from utils import OCR, unnormalize_box
|
6 |
+
|
7 |
+
|
8 |
+
labels = ["O", "B-MENU.NM", "B-MENU.NUM", "B-MENU.UNITPRICE", "B-MENU.CNT", "B-MENU.DISCOUNTPRICE", "B-MENU.PRICE", "B-MENU.ITEMSUBTOTAL", "B-MENU.VATYN", "B-MENU.ETC", "B-MENU.SUB.NM", "B-MENU.SUB.UNITPRICE", "B-MENU.SUB.CNT", "B-MENU.SUB.PRICE", "B-MENU.SUB.ETC", "B-VOID_MENU.NM", "B-VOID_MENU.PRICE", "B-SUB_TOTAL.SUBTOTAL_PRICE", "B-SUB_TOTAL.DISCOUNT_PRICE", "B-SUB_TOTAL.SERVICE_PRICE", "B-SUB_TOTAL.OTHERSVC_PRICE", "B-SUB_TOTAL.TAX_PRICE", "B-SUB_TOTAL.ETC", "B-TOTAL.TOTAL_PRICE", "B-TOTAL.TOTAL_ETC", "B-TOTAL.CASHPRICE", "B-TOTAL.CHANGEPRICE", "B-TOTAL.CREDITCARDPRICE", "B-TOTAL.EMONEYPRICE", "B-TOTAL.MENUTYPE_CNT", "B-TOTAL.MENUQTY_CNT", "I-MENU.NM", "I-MENU.NUM", "I-MENU.UNITPRICE", "I-MENU.CNT", "I-MENU.DISCOUNTPRICE", "I-MENU.PRICE", "I-MENU.ITEMSUBTOTAL", "I-MENU.VATYN", "I-MENU.ETC", "I-MENU.SUB.NM", "I-MENU.SUB.UNITPRICE", "I-MENU.SUB.CNT", "I-MENU.SUB.PRICE", "I-MENU.SUB.ETC", "I-VOID_MENU.NM", "I-VOID_MENU.PRICE", "I-SUB_TOTAL.SUBTOTAL_PRICE", "I-SUB_TOTAL.DISCOUNT_PRICE", "I-SUB_TOTAL.SERVICE_PRICE", "I-SUB_TOTAL.OTHERSVC_PRICE", "I-SUB_TOTAL.TAX_PRICE", "I-SUB_TOTAL.ETC", "I-TOTAL.TOTAL_PRICE", "I-TOTAL.TOTAL_ETC", "I-TOTAL.CASHPRICE", "I-TOTAL.CHANGEPRICE", "I-TOTAL.CREDITCARDPRICE", "I-TOTAL.EMONEYPRICE", "I-TOTAL.MENUTYPE_CNT", "I-TOTAL.MENUQTY_CNT"]
|
9 |
+
id2label = {v: k for v, k in enumerate(labels)}
|
10 |
+
label2id = {k: v for v, k in enumerate(labels)}
|
11 |
+
|
12 |
+
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-finetuned-cord2", apply_ocr=False)
|
13 |
+
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-finetuned-cord2", apply_ocr=False)
|
14 |
+
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-finetuned-cord2")
|
15 |
+
|
16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
+
model.to(device)
|
18 |
+
|
19 |
+
|
20 |
+
def prediction(image):
|
21 |
+
boxes, words = OCR(image)
|
22 |
+
encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True)
|
23 |
+
offset_mapping = encoding.pop('offset_mapping')
|
24 |
+
|
25 |
+
for k, v in encoding.items():
|
26 |
+
encoding[k] = v.to(device)
|
27 |
+
|
28 |
+
outputs = model(**encoding)
|
29 |
+
|
30 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
31 |
+
token_boxes = encoding.bbox.squeeze().tolist()
|
32 |
+
|
33 |
+
inp_ids = encoding.input_ids.squeeze().tolist()
|
34 |
+
inp_words = [tokenizer.decode(i) for i in inp_ids]
|
35 |
+
|
36 |
+
width, height = image.size
|
37 |
+
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
|
38 |
+
|
39 |
+
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
40 |
+
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
41 |
+
true_words = []
|
42 |
+
|
43 |
+
for id, i in enumerate(inp_words):
|
44 |
+
if not is_subword[id]:
|
45 |
+
true_words.append(i)
|
46 |
+
else:
|
47 |
+
true_words[-1] = true_words[-1]+i
|
48 |
+
|
49 |
+
true_predictions = true_predictions[1:-1]
|
50 |
+
true_boxes = true_boxes[1:-1]
|
51 |
+
true_words = true_words[1:-1]
|
52 |
+
|
53 |
+
preds = []
|
54 |
+
l_words = []
|
55 |
+
bboxes = []
|
56 |
+
|
57 |
+
for i, j in enumerate(true_predictions):
|
58 |
+
if j != 'others':
|
59 |
+
preds.append(true_predictions[i])
|
60 |
+
l_words.append(true_words[i])
|
61 |
+
bboxes.append(true_boxes[i])
|
62 |
+
|
63 |
+
d = {}
|
64 |
+
for id, i in enumerate(preds):
|
65 |
+
if i not in d.keys():
|
66 |
+
d[i] = l_words[id]
|
67 |
+
else:
|
68 |
+
d[i] = d[i] + ", " + l_words[id]
|
69 |
+
d = {k: v.strip() for (k, v) in d.items()}
|
70 |
+
|
71 |
+
# TODO: process the json
|
72 |
+
|
73 |
+
draw = ImageDraw.Draw(image, "RGBA")
|
74 |
+
font = ImageFont.load_default()
|
75 |
+
|
76 |
+
for prediction, box in zip(preds, bboxes):
|
77 |
+
draw.rectangle(box)
|
78 |
+
draw.text((box[0]+10, box[1]-10), text=prediction, font=font, fill="black")
|
79 |
+
|
80 |
+
return d, image
|