import torch import numpy as np from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification from PIL import Image, ImageDraw, ImageFont from utils import OCR, unnormalize_box tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False) processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False) model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-base-cord-sroie") id2label = model.config.id2label label2id = model.config.label2id device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) import json def prediction(image): boxes, words = OCR(image) # Preprocessa l'immagine e il testo con il processore di LayoutLMv3 encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True) offset_mapping = encoding.pop('offset_mapping') # Esegui l'inferenza con il modello fine-tuned outputs = model(**encoding) predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() probabilities = torch.softmax(outputs.logits, dim=-1) confidence_scores = probabilities.max(-1).values.squeeze().tolist() inp_ids = encoding.input_ids.squeeze().tolist() inp_words = [tokenizer.decode(i) for i in inp_ids] width, height = image.size is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] true_confidence_scores = [confidence_scores[idx] for idx, conf in enumerate(confidence_scores) if not is_subword[idx]] true_words = [] for id, i in enumerate(inp_words): if not is_subword[id]: true_words.append(i) else: true_words[-1] = true_words[-1]+i true_predictions = true_predictions[1:-1] true_boxes = true_boxes[1:-1] true_words = true_words[1:-1] true_confidence_scores = true_confidence_scores[1:-1] d = {} for id, i in enumerate(true_predictions): #rimuovo i prefissi if i != "O": i = i[2:] if i not in d.keys(): d[i] = true_words[id] else: d[i] = d[i] + ", " + true_words[id] d = {k: v.strip() for (k, v) in d.items()} if "O" in d: d.pop("O") if("MENU.NM" in d and "MENU.PRICE" in d): if(len(d["MENU.NM"].split(", ")) == len(d["MENU.PRICE"].split(", "))): menu_names = [name.strip() for name in d["MENU.NM"].split(', ')] menu_prices = [price.strip() for price in d["MENU.PRICE"].split(', ')] menu_combined = [{"ITEM": name, "PRICE": price} for name, price in zip(menu_names, menu_prices)] d.pop("MENU.NM") d.pop("MENU.PRICE") d["MENU"] = menu_combined draw = ImageDraw.Draw(image, "RGBA") font = ImageFont.load_default() for prediction, box, confidence in zip(true_predictions, true_boxes, true_confidence_scores): draw.rectangle(box) draw.text((box[0]+10, box[1]-10), text=str(prediction)+ ", "+ str(confidence), font=font, fill="black", font_size="15") return d