Spaces:
Runtime error
Runtime error
Duplicate from awacke1/StreamlitWikipediaChat
Browse filesCo-authored-by: Aaron C Wacker <[email protected]>
- .gitattributes +34 -0
- README.md +14 -0
- app.py +239 -0
- requirements.txt +10 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: πππStreamlit-Wikipedia-Chat
|
3 |
+
emoji: ππ¨βπ«π©βπ«
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: pink
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.17.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
duplicated_from: awacke1/StreamlitWikipediaChat
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import spacy
|
3 |
+
import wikipediaapi
|
4 |
+
import wikipedia
|
5 |
+
from wikipedia.exceptions import DisambiguationError
|
6 |
+
from transformers import TFAutoModel, AutoTokenizer
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import faiss
|
10 |
+
import datetime
|
11 |
+
import time
|
12 |
+
|
13 |
+
|
14 |
+
try:
|
15 |
+
nlp = spacy.load("en_core_web_sm")
|
16 |
+
except:
|
17 |
+
spacy.cli.download("en_core_web_sm")
|
18 |
+
nlp = spacy.load("en_core_web_sm")
|
19 |
+
|
20 |
+
wh_words = ['what', 'who', 'how', 'when', 'which']
|
21 |
+
|
22 |
+
def get_concepts(text):
|
23 |
+
text = text.lower()
|
24 |
+
doc = nlp(text)
|
25 |
+
concepts = []
|
26 |
+
for chunk in doc.noun_chunks:
|
27 |
+
if chunk.text not in wh_words:
|
28 |
+
concepts.append(chunk.text)
|
29 |
+
return concepts
|
30 |
+
|
31 |
+
def get_passages(text, k=100):
|
32 |
+
doc = nlp(text)
|
33 |
+
passages = []
|
34 |
+
passage_len = 0
|
35 |
+
passage = ""
|
36 |
+
sents = list(doc.sents)
|
37 |
+
for i in range(len(sents)):
|
38 |
+
sen = sents[i]
|
39 |
+
passage_len += len(sen)
|
40 |
+
if passage_len >= k:
|
41 |
+
passages.append(passage)
|
42 |
+
passage = sen.text
|
43 |
+
passage_len = len(sen)
|
44 |
+
continue
|
45 |
+
elif i == (len(sents) - 1):
|
46 |
+
passage += " " + sen.text
|
47 |
+
passages.append(passage)
|
48 |
+
passage = ""
|
49 |
+
passage_len = 0
|
50 |
+
continue
|
51 |
+
passage += " " + sen.text
|
52 |
+
return passages
|
53 |
+
|
54 |
+
def get_dicts_for_dpr(concepts, n_results=20, k=100):
|
55 |
+
dicts = []
|
56 |
+
for concept in concepts:
|
57 |
+
wikis = wikipedia.search(concept, results=n_results)
|
58 |
+
st.write(f"{concept} No of Wikis: {len(wikis)}")
|
59 |
+
for wiki in wikis:
|
60 |
+
try:
|
61 |
+
html_page = wikipedia.page(title=wiki, auto_suggest=False)
|
62 |
+
except DisambiguationError:
|
63 |
+
continue
|
64 |
+
htmlResults = html_page.content
|
65 |
+
passages = get_passages(htmlResults, k=k)
|
66 |
+
for passage in passages:
|
67 |
+
i_dicts = {}
|
68 |
+
i_dicts['text'] = passage
|
69 |
+
i_dicts['title'] = wiki
|
70 |
+
dicts.append(i_dicts)
|
71 |
+
return dicts
|
72 |
+
|
73 |
+
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
74 |
+
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
75 |
+
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
76 |
+
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
77 |
+
|
78 |
+
def get_title_text_combined(passage_dicts):
|
79 |
+
res = []
|
80 |
+
for p in passage_dicts:
|
81 |
+
res.append(tuple((p['title'], p['text'])))
|
82 |
+
return res
|
83 |
+
|
84 |
+
def extracted_passage_embeddings(processed_passages, max_length=156):
|
85 |
+
passage_inputs = p_tokenizer.batch_encode_plus(
|
86 |
+
processed_passages,
|
87 |
+
add_special_tokens=True,
|
88 |
+
truncation=True,
|
89 |
+
padding="max_length",
|
90 |
+
max_length=max_length,
|
91 |
+
return_token_type_ids=True
|
92 |
+
)
|
93 |
+
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']),
|
94 |
+
np.array(passage_inputs['token_type_ids'])],
|
95 |
+
batch_size=64,
|
96 |
+
verbose=1)
|
97 |
+
return passage_embeddings
|
98 |
+
|
99 |
+
def extracted_query_embeddings(queries, max_length=64):
|
100 |
+
query_inputs = q_tokenizer.batch_encode_plus(
|
101 |
+
queries,
|
102 |
+
add_special_tokens=True,
|
103 |
+
truncation=True,
|
104 |
+
padding="max_length",
|
105 |
+
max_length=max_length,
|
106 |
+
return_token_type_ids=True
|
107 |
+
)
|
108 |
+
|
109 |
+
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
|
110 |
+
np.array(query_inputs['attention_mask']),
|
111 |
+
np.array(query_inputs['token_type_ids'])],
|
112 |
+
batch_size=1,
|
113 |
+
verbose=1)
|
114 |
+
return query_embeddings
|
115 |
+
|
116 |
+
def get_pagetext(page):
|
117 |
+
s = str(page).replace("/t","")
|
118 |
+
return s
|
119 |
+
|
120 |
+
def get_wiki_summary(search):
|
121 |
+
wiki_wiki = wikipediaapi.Wikipedia('en')
|
122 |
+
page = wiki_wiki.page(search)
|
123 |
+
|
124 |
+
|
125 |
+
def get_wiki_summaryDF(search):
|
126 |
+
wiki_wiki = wikipediaapi.Wikipedia('en')
|
127 |
+
page = wiki_wiki.page(search)
|
128 |
+
|
129 |
+
isExist = page.exists()
|
130 |
+
if not isExist:
|
131 |
+
return isExist, "Not found", "Not found", "Not found", "Not found"
|
132 |
+
|
133 |
+
pageurl = page.fullurl
|
134 |
+
pagetitle = page.title
|
135 |
+
pagesummary = page.summary[0:60]
|
136 |
+
pagetext = get_pagetext(page.text)
|
137 |
+
|
138 |
+
backlinks = page.backlinks
|
139 |
+
linklist = ""
|
140 |
+
for link in backlinks.items():
|
141 |
+
pui = link[0]
|
142 |
+
linklist += pui + " , "
|
143 |
+
a=1
|
144 |
+
|
145 |
+
categories = page.categories
|
146 |
+
categorylist = ""
|
147 |
+
for category in categories.items():
|
148 |
+
pui = category[0]
|
149 |
+
categorylist += pui + " , "
|
150 |
+
a=1
|
151 |
+
|
152 |
+
links = page.links
|
153 |
+
linklist2 = ""
|
154 |
+
for link in links.items():
|
155 |
+
pui = link[0]
|
156 |
+
linklist2 += pui + " , "
|
157 |
+
a=1
|
158 |
+
|
159 |
+
sections = page.sections
|
160 |
+
|
161 |
+
ex_dic = {
|
162 |
+
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
|
163 |
+
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
|
164 |
+
}
|
165 |
+
|
166 |
+
df = pd.DataFrame(ex_dic)
|
167 |
+
|
168 |
+
return df
|
169 |
+
|
170 |
+
|
171 |
+
def save_message(name, message):
|
172 |
+
now = datetime.datetime.now()
|
173 |
+
timestamp = now.strftime("%Y-%m-%d %H:%M:%S")
|
174 |
+
with open("chat.txt", "a") as f:
|
175 |
+
f.write(f"{timestamp} - {name}: {message}\n")
|
176 |
+
|
177 |
+
def press_release():
|
178 |
+
st.markdown("""ππ Breaking News! π’π£
|
179 |
+
|
180 |
+
Introducing StreamlitWikipediaChat - the ultimate way to chat with Wikipedia and the whole world at the same time! πππ
|
181 |
+
|
182 |
+
Are you tired of reading boring articles on Wikipedia? Do you want to have some fun while learning new things? Then StreamlitWikipediaChat is just the thing for you! ππ»
|
183 |
+
|
184 |
+
With StreamlitWikipediaChat, you can ask Wikipedia anything you want and get instant responses! Whether you want to know the capital of Madagascar or how to make a delicious chocolate cake, Wikipedia has got you covered. π°π
|
185 |
+
|
186 |
+
But that's not all! You can also chat with other people from around the world who are using StreamlitWikipediaChat at the same time. It's like a virtual classroom where you can learn from and teach others. ππ¨βπ«π©βπ«
|
187 |
+
|
188 |
+
And the best part? StreamlitWikipediaChat is super easy to use! All you have to do is type in your question and hit send. That's it! π€―π
|
189 |
+
|
190 |
+
So, what are you waiting for? Join the fun and start chatting with Wikipedia and the world today! ππ
|
191 |
+
|
192 |
+
StreamlitWikipediaChat - where learning meets fun! π€π""")
|
193 |
+
|
194 |
+
|
195 |
+
def main():
|
196 |
+
st.title("Streamlit Chat")
|
197 |
+
|
198 |
+
name = st.text_input("Enter your name")
|
199 |
+
message = st.text_input("Enter a topic to share from Wikipedia")
|
200 |
+
if st.button("Submit"):
|
201 |
+
|
202 |
+
# wiki
|
203 |
+
df = get_wiki_summaryDF(message)
|
204 |
+
|
205 |
+
save_message(name, message)
|
206 |
+
save_message(name, df)
|
207 |
+
|
208 |
+
st.text("Message sent!")
|
209 |
+
|
210 |
+
|
211 |
+
st.text("Chat history:")
|
212 |
+
with open("chat.txt", "a+") as f:
|
213 |
+
f.seek(0)
|
214 |
+
chat_history = f.read()
|
215 |
+
#st.text(chat_history)
|
216 |
+
st.markdown(chat_history)
|
217 |
+
|
218 |
+
countdown = st.empty()
|
219 |
+
t = 60
|
220 |
+
while t:
|
221 |
+
mins, secs = divmod(t, 60)
|
222 |
+
countdown.text(f"Time remaining: {mins:02d}:{secs:02d}")
|
223 |
+
time.sleep(1)
|
224 |
+
t -= 1
|
225 |
+
if t == 0:
|
226 |
+
countdown.text("Time's up!")
|
227 |
+
with open("chat.txt", "a+") as f:
|
228 |
+
f.seek(0)
|
229 |
+
chat_history = f.read()
|
230 |
+
#st.text(chat_history)
|
231 |
+
st.markdown(chat_history)
|
232 |
+
|
233 |
+
press_release()
|
234 |
+
|
235 |
+
t = 60
|
236 |
+
|
237 |
+
if __name__ == "__main__":
|
238 |
+
main()
|
239 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wikipedia
|
2 |
+
spacy
|
3 |
+
faiss-cpu
|
4 |
+
pandas
|
5 |
+
transformers
|
6 |
+
tensorflow
|
7 |
+
wikipedia-api
|
8 |
+
beautifulsoup4
|
9 |
+
streamlit
|
10 |
+
requests
|