Spaces:
Sleeping
Sleeping
le quy don
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,258 +1,318 @@
|
|
1 |
-
import spaces
|
2 |
-
import torch
|
3 |
import os
|
4 |
-
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
5 |
-
import gradio as gr
|
6 |
-
import traceback
|
7 |
import gc
|
|
|
|
|
|
|
8 |
import numpy as np
|
9 |
import librosa
|
|
|
10 |
from pydub import AudioSegment
|
11 |
from pydub.effects import normalize
|
|
|
|
|
12 |
from huggingface_hub import snapshot_download
|
13 |
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav
|
14 |
|
15 |
-
#
|
16 |
-
os.environ["OMP_NUM_THREADS"] = str(os.cpu_count())
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
weights_dir = "checkpoints"
|
23 |
-
|
24 |
-
if not os.path.exists(weights_dir):
|
25 |
-
print("Downloading model weights from HuggingFace...")
|
26 |
-
snapshot_download(
|
27 |
-
repo_id=repo_id,
|
28 |
-
local_dir=weights_dir,
|
29 |
-
local_dir_use_symlinks=False,
|
30 |
-
resume_download=True
|
31 |
-
)
|
32 |
-
print("Model weights downloaded successfully!")
|
33 |
-
else:
|
34 |
-
print("Model weights already exist.")
|
35 |
-
|
36 |
-
return weights_dir
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
print(f"Model loaded successfully on CPU with {os.cpu_count()} threads!")
|
44 |
|
45 |
-
def
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
def
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
# Robustly preprocess audio
|
67 |
try:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
return None
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
file_content = file.read()
|
79 |
-
|
80 |
-
# Generate speech with proper error handling
|
81 |
try:
|
82 |
-
with
|
83 |
-
|
84 |
-
|
|
|
|
|
85 |
|
86 |
-
# Apply speed adjustment if needed
|
87 |
if speed_factor != 1.0:
|
88 |
-
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
return wav_bytes
|
93 |
-
except RuntimeError as e:
|
94 |
-
print(f"Error during inference: {e}")
|
95 |
-
# Try to reset the model
|
96 |
-
if reset_model():
|
97 |
-
gr.Warning("Error occurred. Model has been reset. Please try again.")
|
98 |
-
else:
|
99 |
-
gr.Warning("Error occurred and model reset failed. Please restart the application.")
|
100 |
-
return None
|
101 |
-
|
102 |
-
except Exception as e:
|
103 |
-
traceback.print_exc()
|
104 |
-
gr.Warning(f"Speech generation failed: {str(e)}")
|
105 |
-
# Clean up memory on any error
|
106 |
-
cleanup_memory()
|
107 |
-
return None
|
108 |
|
109 |
-
def
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
temp_output = "temp_output.wav"
|
115 |
-
|
116 |
-
with open(temp_input, "wb") as f:
|
117 |
-
f.write(wav_bytes)
|
118 |
-
|
119 |
-
# Load audio
|
120 |
-
audio = AudioSegment.from_file(temp_input)
|
121 |
-
|
122 |
-
# Apply speed change
|
123 |
-
if speed_factor != 1.0:
|
124 |
-
# Manually adjust frame rate to change speed without pitch alteration
|
125 |
-
new_frame_rate = int(audio.frame_rate * speed_factor)
|
126 |
-
audio = audio._spawn(audio.raw_data, overrides={
|
127 |
-
"frame_rate": new_frame_rate
|
128 |
-
}).set_frame_rate(audio.frame_rate)
|
129 |
-
|
130 |
-
# Export result
|
131 |
-
audio.export(temp_output, format="wav")
|
132 |
-
|
133 |
-
# Read and return
|
134 |
-
with open(temp_output, "rb") as f:
|
135 |
-
result = f.read()
|
136 |
-
|
137 |
-
# Clean up temp files
|
138 |
-
os.remove(temp_input)
|
139 |
-
os.remove(temp_output)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
def cleanup_memory():
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
try:
|
155 |
-
# Load with pydub for robust format handling
|
156 |
-
audio = AudioSegment.from_file(audio_path)
|
157 |
-
|
158 |
-
# Convert to mono if stereo
|
159 |
-
if audio.channels > 1:
|
160 |
-
audio = audio.set_channels(1)
|
161 |
-
|
162 |
-
# Limit duration to prevent memory issues
|
163 |
-
if len(audio) > max_duration * 1000: # pydub uses milliseconds
|
164 |
-
audio = audio[:max_duration * 1000]
|
165 |
-
|
166 |
-
# Normalize audio to prevent clipping
|
167 |
-
audio = normalize(audio)
|
168 |
-
|
169 |
-
# Convert to target sample rate
|
170 |
-
audio = audio.set_frame_rate(target_sr)
|
171 |
-
|
172 |
-
# Export to temporary WAV file with specific parameters
|
173 |
-
temp_path = audio_path.replace(os.path.splitext(audio_path)[1], '_processed.wav')
|
174 |
-
audio.export(
|
175 |
-
temp_path,
|
176 |
-
format="wav",
|
177 |
-
parameters=["-acodec", "pcm_s16le", "-ac", "1", "-ar", str(target_sr)]
|
178 |
-
)
|
179 |
-
|
180 |
-
# Validate the audio with librosa
|
181 |
-
wav, sr = librosa.load(temp_path, sr=target_sr, mono=True)
|
182 |
-
|
183 |
-
# Check for invalid values
|
184 |
-
if np.any(np.isnan(wav)) or np.any(np.isinf(wav)):
|
185 |
-
raise ValueError("Audio contains NaN or infinite values")
|
186 |
-
|
187 |
-
# Ensure reasonable amplitude range
|
188 |
-
if np.max(np.abs(wav)) < 1e-6:
|
189 |
-
raise ValueError("Audio signal is too quiet")
|
190 |
-
|
191 |
-
# Re-save the validated audio
|
192 |
-
import soundfile as sf
|
193 |
-
sf.write(temp_path, wav, sr)
|
194 |
-
|
195 |
-
return temp_path
|
196 |
-
|
197 |
-
except Exception as e:
|
198 |
-
print(f"Audio preprocessing failed: {e}")
|
199 |
-
raise ValueError(f"Failed to process audio: {str(e)}")
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
label="Text to Generate",
|
211 |
-
placeholder="Enter the text you want to synthesize...",
|
212 |
-
lines=3
|
213 |
-
)
|
214 |
-
|
215 |
-
with gr.Accordion("Advanced Options", open=False):
|
216 |
-
infer_timestep = gr.Number(
|
217 |
-
label="Inference Timesteps",
|
218 |
-
value=32,
|
219 |
-
minimum=1,
|
220 |
-
maximum=100,
|
221 |
-
step=1
|
222 |
)
|
223 |
-
|
224 |
-
label="
|
225 |
-
|
226 |
-
|
227 |
-
maximum=5.0,
|
228 |
-
step=0.1
|
229 |
-
)
|
230 |
-
t_w = gr.Number(
|
231 |
-
label="Similarity Weight",
|
232 |
-
value=3.0,
|
233 |
-
minimum=0.1,
|
234 |
-
maximum=10.0,
|
235 |
-
step=0.1
|
236 |
-
)
|
237 |
-
speed_factor = gr.Slider(
|
238 |
-
label="Speed Adjustment",
|
239 |
-
value=1.0,
|
240 |
-
minimum=0.5,
|
241 |
-
maximum=2.0,
|
242 |
-
step=0.1,
|
243 |
-
info="1.0 = normal speed, <1.0 = slower, >1.0 = faster"
|
244 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
-
|
|
|
|
|
247 |
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
if __name__ == '__main__':
|
258 |
-
demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import gc
|
3 |
+
import torch
|
4 |
+
import tempfile
|
5 |
+
import traceback
|
6 |
import numpy as np
|
7 |
import librosa
|
8 |
+
import gradio as gr
|
9 |
from pydub import AudioSegment
|
10 |
from pydub.effects import normalize
|
11 |
+
from concurrent.futures import ThreadPoolExecutor
|
12 |
+
from functools import partial
|
13 |
from huggingface_hub import snapshot_download
|
14 |
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav
|
15 |
|
16 |
+
# Cấu hình tối ưu CPU
|
17 |
+
os.environ["OMP_NUM_THREADS"] = str(os.cpu_count() or 4)
|
18 |
+
os.environ["MKL_NUM_THREADS"] = str(os.cpu_count() or 4)
|
19 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
20 |
+
torch.set_num_threads(os.cpu_count() or 4)
|
21 |
|
22 |
+
# Bộ nhớ đệm
|
23 |
+
AUDIO_CACHE = {}
|
24 |
+
MODEL_CACHE = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
class TTSEngine:
|
27 |
+
def __init__(self):
|
28 |
+
self.model = None
|
29 |
+
self.weights_dir = "checkpoints"
|
30 |
+
self.initialize_model()
|
|
|
31 |
|
32 |
+
def download_weights(self):
|
33 |
+
"""Tải trọng số model nếu chưa có"""
|
34 |
+
repo_id = "mrfakename/MegaTTS3-VoiceCloning"
|
35 |
+
|
36 |
+
if not os.path.exists(self.weights_dir):
|
37 |
+
print("Đang tải trọng số model từ HuggingFace...")
|
38 |
+
snapshot_download(
|
39 |
+
repo_id=repo_id,
|
40 |
+
local_dir=self.weights_dir,
|
41 |
+
local_dir_use_symlinks=False,
|
42 |
+
resume_download=True
|
43 |
+
)
|
44 |
+
print("Đã tải xong trọng số model!")
|
45 |
+
else:
|
46 |
+
print("Trọng số model đã tồn tại.")
|
47 |
|
48 |
+
def initialize_model(self):
|
49 |
+
"""Khởi tạo model TTS"""
|
50 |
+
self.download_weights()
|
51 |
+
print("Đang khởi tạo model MegaTTS3...")
|
52 |
+
self.model = MegaTTS3DiTInfer(device="cpu")
|
53 |
+
print(f"Model đã được tải thành công trên CPU với {os.cpu_count()} luồng!")
|
54 |
+
|
55 |
+
def reset_model(self):
|
56 |
+
"""Khởi tạo lại model"""
|
57 |
+
try:
|
58 |
+
print("Đang khởi tạo lại model...")
|
59 |
+
self.model = MegaTTS3DiTInfer(device="cpu")
|
60 |
+
print("Đã khởi tạo lại model thành công!")
|
61 |
+
return True
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Không thể khởi tạo lại model: {e}")
|
64 |
+
return False
|
65 |
+
|
66 |
+
def preprocess_audio(self, audio_path, target_sr=22050, max_duration=30):
|
67 |
+
"""Tiền xử lý audio đầu vào"""
|
68 |
+
cache_key = f"preprocessed_{hash(audio_path)}"
|
69 |
+
if cache_key in AUDIO_CACHE:
|
70 |
+
return AUDIO_CACHE[cache_key]
|
71 |
|
|
|
72 |
try:
|
73 |
+
audio = AudioSegment.from_file(audio_path)
|
74 |
+
audio = audio.set_channels(1).set_frame_rate(target_sr)
|
75 |
+
|
76 |
+
if len(audio) > max_duration * 1000:
|
77 |
+
audio = audio[:max_duration * 1000]
|
78 |
+
|
79 |
+
audio = normalize(audio)
|
80 |
+
|
81 |
+
temp_path = f"temp_{os.path.basename(audio_path)}"
|
82 |
+
audio.export(
|
83 |
+
temp_path,
|
84 |
+
format="wav",
|
85 |
+
parameters=["-acodec", "pcm_s16le", "-ac", "1", "-ar", str(target_sr)]
|
86 |
+
)
|
87 |
+
|
88 |
+
# Xác thực chất lượng audio
|
89 |
+
wav, sr = librosa.load(temp_path, sr=target_sr, mono=True)
|
90 |
+
if np.any(np.isnan(wav)) or np.any(np.isinf(wav)):
|
91 |
+
raise ValueError("Audio chứa giá trị không hợp lệ")
|
92 |
+
|
93 |
+
if np.max(np.abs(wav)) < 1e-6:
|
94 |
+
raise ValueError("Tín hiệu audio quá yếu")
|
95 |
+
|
96 |
+
import soundfile as sf
|
97 |
+
sf.write(temp_path, wav, sr)
|
98 |
+
|
99 |
+
AUDIO_CACHE[cache_key] = temp_path
|
100 |
+
return temp_path
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Lỗi tiền xử lý audio: {e}")
|
104 |
+
raise ValueError(f"Lỗi khi xử lý audio: {str(e)}")
|
105 |
+
|
106 |
+
def process_sentence(self, audio_context, sentence, params):
|
107 |
+
"""Xử lý một câu đơn lẻ"""
|
108 |
+
try:
|
109 |
+
with torch.no_grad():
|
110 |
+
wav_bytes = self.model.forward(
|
111 |
+
audio_context,
|
112 |
+
sentence,
|
113 |
+
time_step=params['infer_timestep'],
|
114 |
+
p_w=params['p_w'],
|
115 |
+
t_w=params['t_w']
|
116 |
+
)
|
117 |
+
|
118 |
+
if params['speed_factor'] != 1.0:
|
119 |
+
wav_bytes = self.adjust_speed(wav_bytes, params['speed_factor'])
|
120 |
+
|
121 |
+
return wav_bytes
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Lỗi khi xử lý câu: {sentence[:50]}... - {str(e)}")
|
124 |
return None
|
125 |
+
|
126 |
+
def adjust_speed(self, wav_bytes, speed_factor):
|
127 |
+
"""Điều chỉnh tốc độ âm thanh"""
|
|
|
|
|
|
|
128 |
try:
|
129 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_input:
|
130 |
+
temp_input.write(wav_bytes)
|
131 |
+
temp_input_path = temp_input.name
|
132 |
+
|
133 |
+
audio = AudioSegment.from_file(temp_input_path)
|
134 |
|
|
|
135 |
if speed_factor != 1.0:
|
136 |
+
new_frame_rate = int(audio.frame_rate * speed_factor)
|
137 |
+
audio = audio._spawn(audio.raw_data, overrides={
|
138 |
+
"frame_rate": new_frame_rate
|
139 |
+
}).set_frame_rate(audio.frame_rate)
|
140 |
|
141 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
|
142 |
+
audio.export(temp_output.name, format="wav")
|
143 |
+
with open(temp_output.name, "rb") as f:
|
144 |
+
result = f.read()
|
145 |
+
|
146 |
+
os.unlink(temp_input_path)
|
147 |
+
os.unlink(temp_output.name)
|
148 |
+
|
149 |
+
return result
|
150 |
+
except Exception as e:
|
151 |
+
print(f"Lỗi điều chỉnh tốc độ: {e}")
|
152 |
return wav_bytes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
def generate_speech(self, inp_audio, inp_text, params):
|
155 |
+
"""Tạo giọng nói từ văn bản"""
|
156 |
+
if not inp_audio or not inp_text:
|
157 |
+
gr.Warning("Vui lòng cung cấp cả audio tham chiếu và văn bản cần chuyển đổi.")
|
158 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
try:
|
161 |
+
print(f"Đang tạo giọng nói cho văn bản dài {len(inp_text)} ký tự...")
|
162 |
+
|
163 |
+
# Xử lý audio đầu vào với bộ nhớ đệm
|
164 |
+
cache_key = f"audio_{hash(inp_audio)}"
|
165 |
+
if cache_key not in AUDIO_CACHE:
|
166 |
+
processed_audio_path = self.preprocess_audio(inp_audio)
|
167 |
+
cut_wav(processed_audio_path, max_len=28)
|
168 |
+
|
169 |
+
with open(processed_audio_path, 'rb') as file:
|
170 |
+
file_content = file.read()
|
171 |
+
|
172 |
+
audio_context = self.model.preprocess(file_content)
|
173 |
+
AUDIO_CACHE[cache_key] = audio_context
|
174 |
+
else:
|
175 |
+
audio_context = AUDIO_CACHE[cache_key]
|
176 |
+
print("Đã sử dụng audio từ bộ nhớ đệm")
|
177 |
+
|
178 |
+
# Chia văn bản thành các câu
|
179 |
+
sentences = [s.strip() for s in inp_text.split('.') if s.strip()]
|
180 |
+
|
181 |
+
if not sentences:
|
182 |
+
gr.Warning("Không tìm thấy câu nào trong văn bản")
|
183 |
+
return None
|
184 |
+
|
185 |
+
# Xử lý song song các câu
|
186 |
+
with ThreadPoolExecutor(max_workers=min(4, len(sentences))) as executor:
|
187 |
+
process_fn = partial(self.process_sentence, audio_context, params=params)
|
188 |
+
results = list(executor.map(process_fn, sentences))
|
189 |
+
|
190 |
+
# Ghép các đoạn âm thanh lại
|
191 |
+
combined_audio = None
|
192 |
+
for result in results:
|
193 |
+
if result is None:
|
194 |
+
continue
|
195 |
+
|
196 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
197 |
+
temp_file.write(result)
|
198 |
+
temp_path = temp_file.name
|
199 |
+
|
200 |
+
segment = AudioSegment.from_file(temp_path)
|
201 |
+
os.unlink(temp_path)
|
202 |
+
|
203 |
+
if combined_audio is None:
|
204 |
+
combined_audio = segment
|
205 |
+
else:
|
206 |
+
combined_audio += AudioSegment.silent(duration=200) # Thêm khoảng nghỉ 200ms giữa các câu
|
207 |
+
combined_audio += segment
|
208 |
+
|
209 |
+
if combined_audio is None:
|
210 |
+
gr.Warning("Không thể tạo bất kỳ đoạn âm thanh nào")
|
211 |
+
return None
|
212 |
+
|
213 |
+
# Xuất file kết quả
|
214 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as output_file:
|
215 |
+
combined_audio.export(output_file.name, format="wav")
|
216 |
+
with open(output_file.name, "rb") as f:
|
217 |
+
final_result = f.read()
|
218 |
+
os.unlink(output_file.name)
|
219 |
+
|
220 |
+
self.cleanup_memory()
|
221 |
+
return final_result
|
222 |
+
|
223 |
+
except Exception as e:
|
224 |
+
traceback.print_exc()
|
225 |
+
gr.Warning(f"Lỗi khi tạo giọng nói: {str(e)}")
|
226 |
+
self.cleanup_memory()
|
227 |
+
return None
|
228 |
|
229 |
+
def cleanup_memory(self):
|
230 |
+
"""Dọn dẹp bộ nhớ"""
|
231 |
+
gc.collect()
|
232 |
+
if torch.cuda.is_available():
|
233 |
+
torch.cuda.empty_cache()
|
234 |
+
AUDIO_CACHE.clear()
|
235 |
|
236 |
+
# Khởi tạo engine TTS
|
237 |
+
tts_engine = TTSEngine()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
+
# Giao diện Gradio
|
240 |
+
def create_gradio_interface():
|
241 |
+
with gr.Blocks(title="MegaTTS3 - Chuyển văn bản thành giọng nói") as demo:
|
242 |
+
with gr.Row():
|
243 |
+
with gr.Column():
|
244 |
+
reference_audio = gr.Audio(
|
245 |
+
label="Audio tham chiếu",
|
246 |
+
type="filepath",
|
247 |
+
sources=["upload", "microphone"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
)
|
249 |
+
text_input = gr.Textbox(
|
250 |
+
label="Văn bản cần chuyển đổi",
|
251 |
+
placeholder="Nhập văn bản bạn muốn chuyển thành giọng nói...",
|
252 |
+
lines=5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
)
|
254 |
+
|
255 |
+
with gr.Accordion("Tùy chọn nâng cao", open=False):
|
256 |
+
infer_timestep = gr.Slider(
|
257 |
+
label="Số bước suy luận",
|
258 |
+
value=32,
|
259 |
+
minimum=1,
|
260 |
+
maximum=100,
|
261 |
+
step=1
|
262 |
+
)
|
263 |
+
p_w = gr.Slider(
|
264 |
+
label="Trọng số rõ ràng",
|
265 |
+
value=1.4,
|
266 |
+
minimum=0.1,
|
267 |
+
maximum=5.0,
|
268 |
+
step=0.1
|
269 |
+
)
|
270 |
+
t_w = gr.Slider(
|
271 |
+
label="Trọng số tương đồng",
|
272 |
+
value=3.0,
|
273 |
+
minimum=0.1,
|
274 |
+
maximum=10.0,
|
275 |
+
step=0.1
|
276 |
+
)
|
277 |
+
speed_factor = gr.Slider(
|
278 |
+
label="Tốc độ phát",
|
279 |
+
value=1.0,
|
280 |
+
minimum=0.5,
|
281 |
+
maximum=2.0,
|
282 |
+
step=0.1,
|
283 |
+
info="1.0 = bình thường, <1.0 = chậm hơn, >1.0 = nhanh hơn"
|
284 |
+
)
|
285 |
+
|
286 |
+
generate_btn = gr.Button("Tạo giọng nói", variant="primary")
|
287 |
|
288 |
+
with gr.Column():
|
289 |
+
output_audio = gr.Audio(label="Kết quả âm thanh")
|
290 |
+
status = gr.Textbox(label="Trạng thái")
|
291 |
|
292 |
+
generate_btn.click(
|
293 |
+
fn=generate_speech_wrapper,
|
294 |
+
inputs=[reference_audio, text_input, infer_timestep, p_w, t_w, speed_factor],
|
295 |
+
outputs=[output_audio, status]
|
296 |
+
)
|
297 |
|
298 |
+
return demo
|
299 |
+
|
300 |
+
def generate_speech_wrapper(audio, text, timestep, p_w, t_w, speed):
|
301 |
+
params = {
|
302 |
+
'infer_timestep': timestep,
|
303 |
+
'p_w': p_w,
|
304 |
+
't_w': t_w,
|
305 |
+
'speed_factor': speed
|
306 |
+
}
|
307 |
+
result = tts_engine.generate_speech(audio, text, params)
|
308 |
+
status = "Hoàn thành!" if result else "Đã xảy ra lỗi!"
|
309 |
+
return result, status
|
310 |
|
311 |
if __name__ == '__main__':
|
312 |
+
demo = create_gradio_interface()
|
313 |
+
demo.launch(
|
314 |
+
server_name='0.0.0.0',
|
315 |
+
server_port=7860,
|
316 |
+
share=False,
|
317 |
+
show_error=True
|
318 |
+
)
|