Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# Import required libraries
|
2 |
import os
|
3 |
import requests
|
4 |
import speech_recognition as sr
|
@@ -10,17 +9,11 @@ from pydub import AudioSegment
|
|
10 |
import time
|
11 |
import eng_to_ipa as ipa
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
tts = gTTS(word)
|
17 |
-
audio_file_path = f"audio/{word}.mp3"
|
18 |
-
tts.save(audio_file_path)
|
19 |
-
return audio_file_path # Return the local path instead of uploading
|
20 |
-
except Exception as e:
|
21 |
-
return f"Failed to create pronunciation audio: {e}"
|
22 |
|
23 |
-
#
|
24 |
def upfilepath(local_filename):
|
25 |
ts = time.time()
|
26 |
upload_url = f"https://mr2along-speech-recognize.hf.space/gradio_api/upload?upload_id={ts}"
|
@@ -28,18 +21,72 @@ def upfilepath(local_filename):
|
|
28 |
|
29 |
try:
|
30 |
response = requests.post(upload_url, files=files, timeout=30) # Set timeout (e.g., 30 seconds)
|
|
|
31 |
if response.status_code == 200:
|
32 |
result = response.json()
|
33 |
extracted_path = result[0]
|
34 |
return extracted_path
|
35 |
else:
|
36 |
return None
|
|
|
37 |
except requests.exceptions.Timeout:
|
38 |
return "Request timed out. Please try again."
|
39 |
except Exception as e:
|
40 |
return f"An error occurred: {e}"
|
41 |
|
42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def compare_texts(reference_text, transcribed_text):
|
44 |
reference_words = reference_text.split()
|
45 |
transcribed_words = transcribed_text.split()
|
@@ -48,7 +95,7 @@ def compare_texts(reference_text, transcribed_text):
|
|
48 |
sm = difflib.SequenceMatcher(None, reference_text, transcribed_text)
|
49 |
similarity_score = round(sm.ratio() * 100, 2)
|
50 |
|
51 |
-
# Construct HTML output
|
52 |
html_output = f"<strong>Fidelity Class:</strong> "
|
53 |
if similarity_score >= 85:
|
54 |
html_output += f"<strong>GOOD (>=85%)</strong><br>"
|
@@ -61,10 +108,10 @@ def compare_texts(reference_text, transcribed_text):
|
|
61 |
|
62 |
html_output += f"<strong>Quality Score:</strong> {similarity_score}%<br>"
|
63 |
html_output += f"<strong>Transcribed Text:</strong> {transcribed_text}<br>"
|
64 |
-
html_output += f"<strong>IPA Transcription:</strong> {ipa_transcription(reference_text)}<br>"
|
65 |
html_output += "<strong>Word Score List:</strong><br>"
|
66 |
|
67 |
-
# Generate colored word score list
|
68 |
for i, word in enumerate(reference_words):
|
69 |
try:
|
70 |
if word.lower() == transcribed_words[i].lower():
|
@@ -85,14 +132,15 @@ def compare_texts(reference_text, transcribed_text):
|
|
85 |
if incorrect_words_audios:
|
86 |
html_output += "<br><strong>Pronunciation for Incorrect Words:</strong><br>"
|
87 |
for word, audio in incorrect_words_audios:
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
html_output += f'{word}: '
|
91 |
-
html_output += f'<audio controls><source src="{audio_src}" type="audio/mpeg">Your browser does not support the audio tag.</audio
|
92 |
|
93 |
return [html_output]
|
94 |
|
95 |
-
|
96 |
# Step 4: Text-to-Speech Function
|
97 |
def text_to_speech(paragraph):
|
98 |
if not paragraph:
|
@@ -138,4 +186,4 @@ tts_interface = gr.Interface(
|
|
138 |
demo = gr.TabbedInterface([interface, tts_interface], ["Speech Recognition", "Text-to-Speech"])
|
139 |
|
140 |
# Launch Gradio app
|
141 |
-
demo.launch()
|
|
|
|
|
1 |
import os
|
2 |
import requests
|
3 |
import speech_recognition as sr
|
|
|
9 |
import time
|
10 |
import eng_to_ipa as ipa
|
11 |
|
12 |
+
# Create audio directory if it doesn't exist
|
13 |
+
if not os.path.exists('audio'):
|
14 |
+
os.makedirs('audio')
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Step 2: Create pronunciation audio for incorrect words
|
17 |
def upfilepath(local_filename):
|
18 |
ts = time.time()
|
19 |
upload_url = f"https://mr2along-speech-recognize.hf.space/gradio_api/upload?upload_id={ts}"
|
|
|
21 |
|
22 |
try:
|
23 |
response = requests.post(upload_url, files=files, timeout=30) # Set timeout (e.g., 30 seconds)
|
24 |
+
|
25 |
if response.status_code == 200:
|
26 |
result = response.json()
|
27 |
extracted_path = result[0]
|
28 |
return extracted_path
|
29 |
else:
|
30 |
return None
|
31 |
+
|
32 |
except requests.exceptions.Timeout:
|
33 |
return "Request timed out. Please try again."
|
34 |
except Exception as e:
|
35 |
return f"An error occurred: {e}"
|
36 |
|
37 |
+
# Step 1: Transcribe the audio file
|
38 |
+
def transcribe_audio(audio):
|
39 |
+
if audio is None:
|
40 |
+
return "No audio file provided."
|
41 |
+
|
42 |
+
recognizer = sr.Recognizer()
|
43 |
+
|
44 |
+
# Check if the file exists
|
45 |
+
if not os.path.isfile(audio):
|
46 |
+
return "Audio file not found."
|
47 |
+
|
48 |
+
audio_format = audio.split('.')[-1].lower()
|
49 |
+
|
50 |
+
if audio_format != 'wav':
|
51 |
+
try:
|
52 |
+
audio_segment = AudioSegment.from_file(audio)
|
53 |
+
wav_path = audio.replace(audio_format, 'wav')
|
54 |
+
audio_segment.export(wav_path, format='wav')
|
55 |
+
audio = wav_path
|
56 |
+
except Exception as e:
|
57 |
+
return f"Error converting audio: {e}"
|
58 |
+
|
59 |
+
audio_file = sr.AudioFile(audio)
|
60 |
+
with audio_file as source:
|
61 |
+
audio_data = recognizer.record(source)
|
62 |
+
|
63 |
+
try:
|
64 |
+
transcription = recognizer.recognize_google(audio_data)
|
65 |
+
return transcription
|
66 |
+
except sr.UnknownValueError:
|
67 |
+
return "Google Speech Recognition could not understand the audio."
|
68 |
+
except sr.RequestError as e:
|
69 |
+
return f"Error with Google Speech Recognition service: {e}"
|
70 |
+
|
71 |
+
# Function to get IPA transcription
|
72 |
+
def ipa_transcription(sentence):
|
73 |
+
try:
|
74 |
+
ipa_text = ipa.convert(sentence)
|
75 |
+
return ipa_text
|
76 |
+
except Exception as e:
|
77 |
+
return f"Error during IPA transcription: {e}"
|
78 |
+
|
79 |
+
# Step 2: Create pronunciation audio for incorrect words (locally)
|
80 |
+
def create_pronunciation_audio(word):
|
81 |
+
try:
|
82 |
+
tts = gTTS(word)
|
83 |
+
audio_file_path = f"audio/{word}.mp3"
|
84 |
+
tts.save(audio_file_path)
|
85 |
+
return audio_file_path # Return the local path instead of uploading
|
86 |
+
except Exception as e:
|
87 |
+
return f"Failed to create pronunciation audio: {e}"
|
88 |
+
|
89 |
+
# Step 3: Compare the transcribed text with the input paragraph
|
90 |
def compare_texts(reference_text, transcribed_text):
|
91 |
reference_words = reference_text.split()
|
92 |
transcribed_words = transcribed_text.split()
|
|
|
95 |
sm = difflib.SequenceMatcher(None, reference_text, transcribed_text)
|
96 |
similarity_score = round(sm.ratio() * 100, 2)
|
97 |
|
98 |
+
# Construct HTML output with detailed fidelity class
|
99 |
html_output = f"<strong>Fidelity Class:</strong> "
|
100 |
if similarity_score >= 85:
|
101 |
html_output += f"<strong>GOOD (>=85%)</strong><br>"
|
|
|
108 |
|
109 |
html_output += f"<strong>Quality Score:</strong> {similarity_score}%<br>"
|
110 |
html_output += f"<strong>Transcribed Text:</strong> {transcribed_text}<br>"
|
111 |
+
html_output += f"<strong>IPA Transcription:</strong> {ipa_transcription(reference_text)}<br>" # Display IPA transcription
|
112 |
html_output += "<strong>Word Score List:</strong><br>"
|
113 |
|
114 |
+
# Generate colored word score list
|
115 |
for i, word in enumerate(reference_words):
|
116 |
try:
|
117 |
if word.lower() == transcribed_words[i].lower():
|
|
|
132 |
if incorrect_words_audios:
|
133 |
html_output += "<br><strong>Pronunciation for Incorrect Words:</strong><br>"
|
134 |
for word, audio in incorrect_words_audios:
|
135 |
+
suggestion = difflib.get_close_matches(word, reference_words, n=1)
|
136 |
+
suggestion_text = f" (Did you mean: <em>{suggestion[0]}</em>?)" if suggestion else ""
|
137 |
+
up_audio = upfilepath(audio)
|
138 |
+
audio_src = f"https://mr2along-speech-recognize.hf.space/gradio_api/file={up_audio}"
|
139 |
html_output += f'{word}: '
|
140 |
+
html_output += f'<audio controls><source src="{audio_src}" type="audio/mpeg">Your browser does not support the audio tag.</audio>{suggestion_text}<br>'
|
141 |
|
142 |
return [html_output]
|
143 |
|
|
|
144 |
# Step 4: Text-to-Speech Function
|
145 |
def text_to_speech(paragraph):
|
146 |
if not paragraph:
|
|
|
186 |
demo = gr.TabbedInterface([interface, tts_interface], ["Speech Recognition", "Text-to-Speech"])
|
187 |
|
188 |
# Launch Gradio app
|
189 |
+
demo.launch()
|