import speech_recognition as sr
import difflib
import gradio as gr
from gtts import gTTS
import io
# Step 1: Transcribe the audio file
def transcribe_audio(audio):
recognizer = sr.Recognizer()
# Convert audio into recognizable format for the Recognizer
audio_file = sr.AudioFile(audio)
with audio_file as source:
audio_data = recognizer.record(source)
try:
# Recognize the audio using Google Web Speech API
transcription = recognizer.recognize_google(audio_data)
return transcription
except sr.UnknownValueError:
return "Google Speech Recognition could not understand the audio"
except sr.RequestError as e:
return f"Error with Google Speech Recognition service: {e}"
# Step 2: Create pronunciation audio for incorrect words
def create_pronunciation_audio(word):
tts = gTTS(word)
audio_buffer = io.BytesIO()
tts.save(audio_buffer)
audio_buffer.seek(0)
return audio_buffer
# Step 3: Compare the transcribed text with the input paragraph
def compare_texts(reference_text, transcribed_text):
word_scores = []
reference_words = reference_text.split()
transcribed_words = transcribed_text.split()
incorrect_words_audios = [] # Store audio buffers for incorrect words
sm = difflib.SequenceMatcher(None, reference_text, transcribed_text)
similarity_score = round(sm.ratio() * 100, 2)
# Construct HTML output
html_output = f"Fidelity Class: {'CORRECT' if similarity_score > 50 else 'INCORRECT'} "
html_output += f"Quality Score: {similarity_score} "
html_output += f"Transcribed Text: {transcribed_text} "
html_output += "Word Score List: "
# Generate colored word score list
for i, word in enumerate(reference_words):
try:
if word.lower() == transcribed_words[i].lower():
html_output += f'{word} ' # Correct words in green
elif difflib.get_close_matches(word, transcribed_words):
html_output += f'{word} ' # Close matches in yellow
else:
# Incorrect words in red
html_output += f'{word} '
# Create pronunciation audio for the incorrect word
audio_buffer = create_pronunciation_audio(word)
incorrect_words_audios.append((word, audio_buffer))
except IndexError:
html_output += f'{word} ' # Words in reference that were not transcribed
# Provide audio for incorrect words
if incorrect_words_audios:
html_output += " Pronunciation for Incorrect Words: "
for word, audio in incorrect_words_audios:
html_output += f'{word}: '
# Return the audio buffer as part of the HTML output
html_output += f' '
return html_output
# Step 4: Text-to-Speech Function
def text_to_speech(paragraph):
tts = gTTS(paragraph)
audio_buffer = io.BytesIO()
tts.save(audio_buffer)
audio_buffer.seek(0)
return audio_buffer
# Gradio Interface Function
def gradio_function(paragraph, audio):
# Transcribe the audio
transcribed_text = transcribe_audio(audio)
# Compare the original paragraph with the transcribed text
comparison_result = compare_texts(paragraph, transcribed_text)
# Return comparison result
return comparison_result
# Gradio Interface using the updated API
interface = gr.Interface(
fn=gradio_function,
inputs=[
gr.Textbox(lines=5, label="Input Paragraph"),
gr.Audio(type="filepath", label="Record Audio")
],
outputs="html",
title="Speech Recognition Comparison",
description="Input a paragraph, record your audio, and compare the transcription to the original text."
)
# Gradio Interface for Text-to-Speech
tts_interface = gr.Interface(
fn=text_to_speech,
inputs=gr.Textbox(lines=5, label="Input Paragraph to Read Aloud"),
outputs=gr.Audio(label="Text-to-Speech Output"),
title="Text-to-Speech",
description="This tool will read your input paragraph aloud."
)
# Combine both interfaces into one
demo = gr.TabbedInterface([interface, tts_interface], ["Speech Recognition", "Text-to-Speech"])
# Launch Gradio app
demo.launch()