import os
import requests
import speech_recognition as sr
import difflib
import gradio as gr
from gtts import gTTS
import io
from pydub import AudioSegment
import time
import pronouncing
import epitran
# Create audio directory if it doesn't exist
if not os.path.exists('audio'):
os.makedirs('audio')
# Initialize the epitran object for English
epi = epitran.Epitran('eng-Latn')
# Step 2: Create pronunciation audio for incorrect words
def upfilepath(local_filename):
ts = time.time()
upload_url = f"https://mr2along-speech-recognize.hf.space/gradio_api/upload?upload_id={ts}"
files = {'files': open(local_filename, 'rb')}
try:
response = requests.post(upload_url, files=files, timeout=30) # Set timeout (e.g., 30 seconds)
if response.status_code == 200:
result = response.json()
extracted_path = result[0]
return extracted_path
else:
return None
except requests.exceptions.Timeout:
return "Request timed out. Please try again."
except Exception as e:
return f"An error occurred: {e}"
# Step 1: Transcribe the audio file
def transcribe_audio(audio):
if audio is None:
return "No audio file provided."
recognizer = sr.Recognizer()
# Check if the file exists
if not os.path.isfile(audio):
return "Audio file not found."
audio_format = audio.split('.')[-1].lower()
if audio_format != 'wav':
try:
audio_segment = AudioSegment.from_file(audio)
wav_path = audio.replace(audio_format, 'wav')
audio_segment.export(wav_path, format='wav')
audio = wav_path
except Exception as e:
return f"Error converting audio: {e}"
audio_file = sr.AudioFile(audio)
with audio_file as source:
audio_data = recognizer.record(source)
try:
transcription = recognizer.recognize_google(audio_data)
return transcription
except sr.UnknownValueError:
return "Google Speech Recognition could not understand the audio"
except sr.RequestError as e:
return f"Error with Google Speech Recognition service: {e}"
# Step 2: Create pronunciation audio for incorrect words (locally)
def create_pronunciation_audio(word):
try:
tts = gTTS(word)
audio_file_path = f"audio/{word}.mp3"
tts.save(audio_file_path)
return audio_file_path # Return the local path instead of uploading
except Exception as e:
return f"Failed to create pronunciation audio: {e}"
# Function for phonetic respelling
def phonetic_respelling(sentence):
words = sentence.split()
respelled = []
for word in words:
# Find close matches for each word
close_matches = pronouncing.search(word)
if close_matches:
# Get the first close match
closest_word = close_matches[0]
respelled.append(pronouncing.phones_for_word(closest_word)[0]) # Use phonemes for the closest match
else:
respelled.append(word)
# Convert phonemes to respelling
respelling = ' '.join(respelled)
# Replace phonemes with common respellings
respelling = respelling.replace('ˈ', '').replace('ˌ', '').replace('ː', '') # Clean up phoneme symbols
respelling = respelling.replace('ɑ', 'a').replace('ə', 'uh').replace('ɪ', 'i').replace('ʊ', 'u') # Sample conversions
return respelling
# Function for IPA transcription
def ipa_transcription(sentence):
return epi.transliterate(sentence)
# Step 3: Compare the transcribed text with the input paragraph
def compare_texts(reference_text, transcribed_text):
reference_words = reference_text.split()
transcribed_words = transcribed_text.split()
incorrect_words_audios = [] # Store audio paths for incorrect words
sm = difflib.SequenceMatcher(None, reference_text, transcribed_text)
similarity_score = round(sm.ratio() * 100, 2)
# Construct HTML output with detailed fidelity class
html_output = f"Fidelity Class: "
if similarity_score >= 85:
html_output += f"GOOD (>=85%) "
elif similarity_score >= 70:
html_output += f"ACCEPTABLE (70% - 85%) "
elif similarity_score >= 50:
html_output += f"NEEDS IMPROVEMENT (50% - 70%) "
else:
html_output += f"POOR (<50%) "
html_output += f"Quality Score: {similarity_score}% "
html_output += f"Transcribed Text: {transcribed_text} "
html_output += f"Input Sentence: {reference_text} "
html_output += f"Phonetic Respelling: {phonetic_respelling(reference_text)} "
html_output += f"IPA Transcription: {ipa_transcription(reference_text)} "
html_output += "Word Score List: "
# Generate colored word score list
for i, word in enumerate(reference_words):
try:
if word.lower() == transcribed_words[i].lower():
html_output += f'{word} ' # Correct words in green
elif difflib.get_close_matches(word, [transcribed_words[i]]):
html_output += f'{word} ' # Close matches in yellow
else:
# Incorrect words in red
html_output += f'{word} '
# Create pronunciation audio for the incorrect word
audio_file_path = create_pronunciation_audio(word)
incorrect_words_audios.append((word, audio_file_path))
except IndexError:
# Word in reference that was not transcribed
html_output += f'{word} '
# Provide audio for incorrect words
if incorrect_words_audios:
html_output += " Pronunciation for Incorrect Words: "
for word, audio in incorrect_words_audios:
suggestion = difflib.get_close_matches(word, reference_words, n=1)
suggestion_text = f" (Did you mean: {suggestion[0]}?)" if suggestion else ""
up_audio = upfilepath(audio)
audio_src = f"https://mr2along-speech-recognize.hf.space/gradio_api/file={up_audio}"
html_output += f'{word}: '
html_output += f'{suggestion_text} '
return [html_output]
# Step 4: Text-to-Speech Function
def text_to_speech(paragraph):
if not paragraph:
return None # Handle the case when no text is provided
tts = gTTS(paragraph)
audio_file_path = "audio/paragraph.mp3" # Save the audio to a file
tts.save(audio_file_path)
return audio_file_path # Return the file path
# Gradio Interface Function
def gradio_function(paragraph, audio):
# Transcribe the audio
transcribed_text = transcribe_audio(audio)
# Compare the original paragraph with the transcribed text
comparison_result = compare_texts(paragraph, transcribed_text)
# Return comparison result
return comparison_result
# Gradio Interface using the updated API
interface = gr.Interface(
fn=gradio_function,
inputs=[
gr.Textbox(lines=5, label="Input Paragraph"),
gr.Audio(type="filepath", label="Record Audio")
],
outputs=["html"],
title="Speech Recognition Comparison",
description="Input a paragraph, record your audio, and compare the transcription to the original text."
)
# Gradio Interface for Text-to-Speech
tts_interface = gr.Interface(
fn=text_to_speech,
inputs=gr.Textbox(lines=5, label="Input Paragraph to Read Aloud"),
outputs=gr.Audio(label="Text-to-Speech Output"),
title="Text-to-Speech",
description="This tool will read your input paragraph aloud."
)
# Combine both interfaces into one
demo = gr.TabbedInterface([interface, tts_interface], ["Speech Recognition", "Text-to-Speech"])
# Launch Gradio app
demo.launch()