Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,41 +2,38 @@ import os
|
|
2 |
import speech_recognition as sr
|
3 |
import difflib
|
4 |
import gradio as gr
|
5 |
-
|
6 |
-
import
|
7 |
-
|
8 |
|
9 |
-
#
|
10 |
if not os.path.exists('audio'):
|
11 |
os.makedirs('audio')
|
12 |
|
13 |
-
#
|
14 |
def transcribe_audio(audio):
|
15 |
if audio is None:
|
16 |
-
return "No audio file provided." #
|
17 |
|
18 |
recognizer = sr.Recognizer()
|
19 |
audio_format = audio.split('.')[-1].lower()
|
20 |
|
21 |
-
#
|
22 |
if audio_format != 'wav':
|
23 |
try:
|
24 |
-
# Load the audio file with pydub
|
25 |
audio_segment = AudioSegment.from_file(audio)
|
26 |
wav_path = audio.replace(audio_format, 'wav')
|
27 |
-
audio_segment.export(wav_path, format='wav') #
|
28 |
-
audio = wav_path #
|
29 |
except Exception as e:
|
30 |
return f"Error converting audio: {e}"
|
31 |
|
32 |
-
# Convert audio into recognizable format for the Recognizer
|
33 |
audio_file = sr.AudioFile(audio)
|
34 |
|
35 |
with audio_file as source:
|
36 |
audio_data = recognizer.record(source)
|
37 |
|
38 |
try:
|
39 |
-
# Recognize the audio using Google Web Speech API
|
40 |
transcription = recognizer.recognize_google(audio_data)
|
41 |
return transcription
|
42 |
except sr.UnknownValueError:
|
@@ -44,78 +41,75 @@ def transcribe_audio(audio):
|
|
44 |
except sr.RequestError as e:
|
45 |
return f"Error with Google Speech Recognition service: {e}"
|
46 |
|
47 |
-
#
|
48 |
def create_pronunciation_audio(word):
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
#
|
55 |
def compare_texts(reference_text, transcribed_text):
|
|
|
56 |
reference_words = reference_text.split()
|
57 |
transcribed_words = transcribed_text.split()
|
58 |
-
incorrect_words_audios = [] #
|
59 |
|
60 |
sm = difflib.SequenceMatcher(None, reference_text, transcribed_text)
|
61 |
similarity_score = round(sm.ratio() * 100, 2)
|
62 |
|
63 |
-
#
|
64 |
html_output = f"<strong>Fidelity Class:</strong> {'CORRECT' if similarity_score > 50 else 'INCORRECT'}<br>"
|
65 |
html_output += f"<strong>Quality Score:</strong> {similarity_score}<br>"
|
66 |
html_output += f"<strong>Transcribed Text:</strong> {transcribed_text}<br>"
|
67 |
html_output += "<strong>Word Score List:</strong><br>"
|
68 |
|
69 |
-
#
|
70 |
for i, word in enumerate(reference_words):
|
71 |
try:
|
72 |
if word.lower() == transcribed_words[i].lower():
|
73 |
-
html_output += f'<span style="color: green;">{word}</span> ' #
|
74 |
elif difflib.get_close_matches(word, transcribed_words):
|
75 |
-
html_output += f'<span style="color: yellow;">{word}</span> ' #
|
76 |
else:
|
77 |
-
#
|
78 |
-
|
79 |
-
# Create pronunciation audio for the incorrect word
|
80 |
audio_file_path = create_pronunciation_audio(word)
|
81 |
incorrect_words_audios.append((word, audio_file_path))
|
82 |
except IndexError:
|
83 |
-
html_output += f'<span style="color: red;">{word}</span> ' #
|
84 |
|
85 |
-
#
|
86 |
if incorrect_words_audios:
|
87 |
html_output += "<br><strong>Pronunciation for Incorrect Words:</strong><br>"
|
88 |
for word, audio in incorrect_words_audios:
|
89 |
-
suggestion = difflib.get_close_matches(word, reference_words, n=1)
|
90 |
-
suggestion_text = f" (Did you mean: <em>{suggestion[0]}</em>?)" if suggestion else ""
|
91 |
html_output += f'{word}: '
|
92 |
-
html_output += f'<audio controls><source src="{audio}" type="audio/
|
93 |
-
|
94 |
|
95 |
return html_output
|
96 |
|
97 |
-
#
|
98 |
def text_to_speech(paragraph):
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
tts = gTTS(paragraph)
|
103 |
-
audio_file_path = "audio/paragraph.mp3" # Save the audio to a file
|
104 |
-
tts.save(audio_file_path)
|
105 |
-
return audio_file_path # Return the file path instead of None
|
106 |
|
107 |
-
#
|
108 |
def gradio_function(paragraph, audio):
|
109 |
-
# Transcribe the audio
|
110 |
transcribed_text = transcribe_audio(audio)
|
111 |
-
|
112 |
-
# Compare the original paragraph with the transcribed text
|
113 |
comparison_result = compare_texts(paragraph, transcribed_text)
|
114 |
-
|
115 |
-
# Return comparison result
|
116 |
return comparison_result
|
117 |
|
118 |
-
# Gradio Interface using the updated API
|
119 |
interface = gr.Interface(
|
120 |
fn=gradio_function,
|
121 |
inputs=[
|
@@ -127,7 +121,6 @@ interface = gr.Interface(
|
|
127 |
description="Input a paragraph, record your audio, and compare the transcription to the original text."
|
128 |
)
|
129 |
|
130 |
-
# Gradio Interface for Text-to-Speech
|
131 |
tts_interface = gr.Interface(
|
132 |
fn=text_to_speech,
|
133 |
inputs=gr.Textbox(lines=5, label="Input Paragraph to Read Aloud"),
|
@@ -136,8 +129,8 @@ tts_interface = gr.Interface(
|
|
136 |
description="This tool will read your input paragraph aloud."
|
137 |
)
|
138 |
|
139 |
-
#
|
140 |
demo = gr.TabbedInterface([interface, tts_interface], ["Speech Recognition", "Text-to-Speech"])
|
141 |
|
142 |
-
#
|
143 |
demo.launch()
|
|
|
2 |
import speech_recognition as sr
|
3 |
import difflib
|
4 |
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
import soundfile as sf
|
8 |
|
9 |
+
# Tạo thư mục audio nếu chưa tồn tại
|
10 |
if not os.path.exists('audio'):
|
11 |
os.makedirs('audio')
|
12 |
|
13 |
+
# Bước 1: Chuyển đổi âm thanh thành văn bản
|
14 |
def transcribe_audio(audio):
|
15 |
if audio is None:
|
16 |
+
return "No audio file provided." # Xử lý trường hợp không có tệp âm thanh
|
17 |
|
18 |
recognizer = sr.Recognizer()
|
19 |
audio_format = audio.split('.')[-1].lower()
|
20 |
|
21 |
+
# Chuyển đổi sang WAV nếu âm thanh không ở định dạng hỗ trợ
|
22 |
if audio_format != 'wav':
|
23 |
try:
|
|
|
24 |
audio_segment = AudioSegment.from_file(audio)
|
25 |
wav_path = audio.replace(audio_format, 'wav')
|
26 |
+
audio_segment.export(wav_path, format='wav') # Chuyển đổi sang WAV
|
27 |
+
audio = wav_path # Cập nhật đường dẫn âm thanh
|
28 |
except Exception as e:
|
29 |
return f"Error converting audio: {e}"
|
30 |
|
|
|
31 |
audio_file = sr.AudioFile(audio)
|
32 |
|
33 |
with audio_file as source:
|
34 |
audio_data = recognizer.record(source)
|
35 |
|
36 |
try:
|
|
|
37 |
transcription = recognizer.recognize_google(audio_data)
|
38 |
return transcription
|
39 |
except sr.UnknownValueError:
|
|
|
41 |
except sr.RequestError as e:
|
42 |
return f"Error with Google Speech Recognition service: {e}"
|
43 |
|
44 |
+
# Bước 2: Tạo âm thanh phát âm cho các từ sai
|
45 |
def create_pronunciation_audio(word):
|
46 |
+
model_name = "tts_models/en/ljspeech/tacotron2" # Mô hình TTS
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
49 |
+
|
50 |
+
inputs = tokenizer(word, return_tensors="pt")
|
51 |
+
|
52 |
+
# Tạo âm thanh từ văn bản
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = model.generate(**inputs)
|
55 |
+
|
56 |
+
# Lưu âm thanh vào tệp
|
57 |
+
audio_file_path = f"audio/{word}.wav"
|
58 |
+
sf.write(audio_file_path, outputs.numpy(), 22050) # Giả định tần số mẫu 22050Hz
|
59 |
+
|
60 |
+
return audio_file_path
|
61 |
|
62 |
+
# Bước 3: So sánh văn bản đã chuyển đổi với đoạn văn bản gốc
|
63 |
def compare_texts(reference_text, transcribed_text):
|
64 |
+
word_scores = []
|
65 |
reference_words = reference_text.split()
|
66 |
transcribed_words = transcribed_text.split()
|
67 |
+
incorrect_words_audios = [] # Lưu trữ đường dẫn âm thanh cho các từ sai
|
68 |
|
69 |
sm = difflib.SequenceMatcher(None, reference_text, transcribed_text)
|
70 |
similarity_score = round(sm.ratio() * 100, 2)
|
71 |
|
72 |
+
# Tạo đầu ra HTML
|
73 |
html_output = f"<strong>Fidelity Class:</strong> {'CORRECT' if similarity_score > 50 else 'INCORRECT'}<br>"
|
74 |
html_output += f"<strong>Quality Score:</strong> {similarity_score}<br>"
|
75 |
html_output += f"<strong>Transcribed Text:</strong> {transcribed_text}<br>"
|
76 |
html_output += "<strong>Word Score List:</strong><br>"
|
77 |
|
78 |
+
# Tạo danh sách điểm số từ màu sắc
|
79 |
for i, word in enumerate(reference_words):
|
80 |
try:
|
81 |
if word.lower() == transcribed_words[i].lower():
|
82 |
+
html_output += f'<span style="color: green;">{word}</span> ' # Từ đúng màu xanh
|
83 |
elif difflib.get_close_matches(word, transcribed_words):
|
84 |
+
html_output += f'<span style="color: yellow;">{word}</span> ' # Từ gần đúng màu vàng
|
85 |
else:
|
86 |
+
html_output += f'<span style="color: red;">{word}</span> ' # Từ sai màu đỏ
|
87 |
+
# Tạo âm thanh phát âm cho từ sai
|
|
|
88 |
audio_file_path = create_pronunciation_audio(word)
|
89 |
incorrect_words_audios.append((word, audio_file_path))
|
90 |
except IndexError:
|
91 |
+
html_output += f'<span style="color: red;">{word}</span> ' # Từ tham chiếu không được chuyển đổi
|
92 |
|
93 |
+
# Cung cấp âm thanh cho các từ sai
|
94 |
if incorrect_words_audios:
|
95 |
html_output += "<br><strong>Pronunciation for Incorrect Words:</strong><br>"
|
96 |
for word, audio in incorrect_words_audios:
|
|
|
|
|
97 |
html_output += f'{word}: '
|
98 |
+
html_output += f'<audio controls><source src="{audio}" type="audio/wav">Your browser does not support the audio tag.</audio><br>'
|
|
|
99 |
|
100 |
return html_output
|
101 |
|
102 |
+
# Bước 4: Chức năng Text-to-Speech
|
103 |
def text_to_speech(paragraph):
|
104 |
+
audio_file_path = create_pronunciation_audio(paragraph) # Sử dụng hàm đã sửa
|
105 |
+
return audio_file_path
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
# Giao diện Gradio
|
108 |
def gradio_function(paragraph, audio):
|
|
|
109 |
transcribed_text = transcribe_audio(audio)
|
|
|
|
|
110 |
comparison_result = compare_texts(paragraph, transcribed_text)
|
|
|
|
|
111 |
return comparison_result
|
112 |
|
|
|
113 |
interface = gr.Interface(
|
114 |
fn=gradio_function,
|
115 |
inputs=[
|
|
|
121 |
description="Input a paragraph, record your audio, and compare the transcription to the original text."
|
122 |
)
|
123 |
|
|
|
124 |
tts_interface = gr.Interface(
|
125 |
fn=text_to_speech,
|
126 |
inputs=gr.Textbox(lines=5, label="Input Paragraph to Read Aloud"),
|
|
|
129 |
description="This tool will read your input paragraph aloud."
|
130 |
)
|
131 |
|
132 |
+
# Kết hợp cả hai giao diện
|
133 |
demo = gr.TabbedInterface([interface, tts_interface], ["Speech Recognition", "Text-to-Speech"])
|
134 |
|
135 |
+
# Khởi động ứng dụng Gradio
|
136 |
demo.launch()
|