Spaces:
Sleeping
Sleeping
from typing import Any | |
import gradio as gr | |
import spaces | |
import torch | |
from PIL import Image | |
from transformers import AutoModelForCausalLM, LlamaTokenizer | |
# Constants | |
DEFAULT_PARAMS = { | |
"do_sample": False, | |
"max_new_tokens": 256, | |
} | |
DEFAULT_QUERY = ( | |
"Provide a factual description of this image in up to two paragraphs. " | |
"Include details on objects, background, scenery, interactions, gestures, poses, and any visible text content. " | |
"Specify the number of repeated objects. " | |
"Describe the dominant colors, color contrasts, textures, and materials. " | |
"Mention the composition, including the arrangement of elements and focus points. " | |
"Note the camera angle or perspective, and provide any identifiable contextual information. " | |
"Include details on the style, lighting, and shadows. " | |
"Avoid subjective interpretations or speculation." | |
) | |
DTYPE = torch.bfloat16 | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load model and tokenizer | |
tokenizer = LlamaTokenizer.from_pretrained( | |
pretrained_model_name_or_path="lmsys/vicuna-7b-v1.5", | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
pretrained_model_name_or_path="THUDM/cogvlm-chat-hf", | |
torch_dtype=DTYPE, | |
trust_remote_code=True, | |
low_cpu_mem_usage=True, | |
) | |
model = model.to(device=DEVICE) | |
def generate_caption( | |
image: Image.Image, | |
params: dict[str, Any] = DEFAULT_PARAMS, | |
) -> str: | |
# Debugging: Check image size and format | |
print(f"Uploaded image format: {image.format}, size: {image.size}") | |
# Convert image to the expected format (if needed) | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
print(f"Image converted to RGB mode: {image.mode}") | |
inputs = model.build_conversation_input_ids( | |
tokenizer=tokenizer, | |
query=DEFAULT_QUERY, | |
history=[], | |
images=[image], | |
) | |
# Debugging: Check tensor shapes | |
print(f"Input IDs shape: {inputs['input_ids'].shape}") | |
print(f"Images tensor shape: {inputs['images'][0].shape}") | |
inputs = { | |
"input_ids": inputs["input_ids"].unsqueeze(0).to(device=DEVICE), | |
"token_type_ids": inputs["token_type_ids"].unsqueeze(0).to(device=DEVICE), | |
"attention_mask": inputs["attention_mask"].unsqueeze(0).to(device=DEVICE), | |
"images": [[inputs["images"][0].to(device=DEVICE, dtype=DTYPE)]], | |
} | |
outputs = model.generate(**inputs, **params) | |
outputs = outputs[:, inputs["input_ids"].shape[1] :] | |
result = tokenizer.decode(outputs[0]) | |
result = result.replace("This image showcases", "").strip().removesuffix("</s>").strip().capitalize() | |
return result | |
# CSS for design enhancements with a fixed image input bar and simplified query | |
css = """ | |
#container { | |
background-color: #f9f9f9; | |
padding: 20px; | |
border-radius: 15px; | |
border: 2px solid #333; /* Darker outline */ | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); /* Enhanced shadow */ | |
max-width: 500px; | |
margin: auto; | |
} | |
#input_image { | |
margin-top: 15px; | |
border: 2px solid #333; /* Darker outline */ | |
border-radius: 8px; | |
height: 180px; /* Fixed height */ | |
object-fit: contain; /* Ensure image fits within the fixed height */ | |
} | |
#output_caption { | |
margin-top: 15px; | |
border: 2px solid #333; /* Darker outline */ | |
border-radius: 8px; | |
height: 200px; /* Fixed height */ | |
overflow-y: auto; /* Scrollable if content exceeds height */ | |
} | |
#run_button { | |
background-color: #fff; /* Dark button color */ | |
color: black; /* White text */ | |
border-radius: 10px; | |
padding: 10px; | |
cursor: pointer; | |
transition: background-color 0.3s ease; | |
margin-top: 15px; | |
} | |
#run_button:hover { | |
background-color: #333; /* Slightly lighter on hover */ | |
} | |
""" | |
# Gradio interface with vertical alignment and fixed image input height | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="container"): | |
input_image = gr.Image(type="pil", elem_id="input_image") | |
run_button = gr.Button(value="Generate Caption", elem_id="run_button") | |
output_caption = gr.Textbox(label="Womener AI", show_copy_button=True, elem_id="output_caption" lines=6) | |
run_button.click( | |
fn=generate_caption, | |
inputs=[input_image], | |
outputs=output_caption, | |
) | |
demo.launch(share=False) | |