Captain / app.py
mrbeliever's picture
Update app.py
f1aed79 verified
from typing import Any
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, LlamaTokenizer
# Constants
DEFAULT_PARAMS = {
"do_sample": False,
"max_new_tokens": 256,
}
DEFAULT_QUERY = (
"Provide a factual description of this image in up to two paragraphs. "
"Include details on objects, background, scenery, interactions, gestures, poses, and any visible text content. "
"Specify the number of repeated objects. "
"Describe the dominant colors, color contrasts, textures, and materials. "
"Mention the composition, including the arrangement of elements and focus points. "
"Note the camera angle or perspective, and provide any identifiable contextual information. "
"Include details on the style, lighting, and shadows. "
"Avoid subjective interpretations or speculation."
)
DTYPE = torch.bfloat16
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and tokenizer
tokenizer = LlamaTokenizer.from_pretrained(
pretrained_model_name_or_path="lmsys/vicuna-7b-v1.5",
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path="THUDM/cogvlm-chat-hf",
torch_dtype=DTYPE,
trust_remote_code=True,
low_cpu_mem_usage=True,
)
model = model.to(device=DEVICE)
@spaces.GPU
@torch.no_grad()
def generate_caption(
image: Image.Image,
params: dict[str, Any] = DEFAULT_PARAMS,
) -> str:
# Debugging: Check image size and format
print(f"Uploaded image format: {image.format}, size: {image.size}")
# Convert image to the expected format (if needed)
if image.mode != "RGB":
image = image.convert("RGB")
print(f"Image converted to RGB mode: {image.mode}")
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=DEFAULT_QUERY,
history=[],
images=[image],
)
# Debugging: Check tensor shapes
print(f"Input IDs shape: {inputs['input_ids'].shape}")
print(f"Images tensor shape: {inputs['images'][0].shape}")
inputs = {
"input_ids": inputs["input_ids"].unsqueeze(0).to(device=DEVICE),
"token_type_ids": inputs["token_type_ids"].unsqueeze(0).to(device=DEVICE),
"attention_mask": inputs["attention_mask"].unsqueeze(0).to(device=DEVICE),
"images": [[inputs["images"][0].to(device=DEVICE, dtype=DTYPE)]],
}
outputs = model.generate(**inputs, **params)
outputs = outputs[:, inputs["input_ids"].shape[1] :]
result = tokenizer.decode(outputs[0])
result = result.replace("This image showcases", "").strip().removesuffix("</s>").strip().capitalize()
return result
# CSS for design enhancements with a fixed image input bar and simplified query
css = """
#container {
background-color: #f9f9f9;
padding: 20px;
border-radius: 15px;
border: 2px solid #333; /* Darker outline */
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); /* Enhanced shadow */
max-width: 450px;
margin: auto;
}
#input_image {
margin-top: 15px;
border: 2px solid #333; /* Darker outline */
border-radius: 8px;
height: 180px; /* Fixed height */
object-fit: contain; /* Ensure image fits within the fixed height */
}
#output_caption {
margin-top: 15px;
border: 2px solid #333; /* Darker outline */
border-radius: 8px;
height: 180px; /* Fixed height */
overflow-y: auto; /* Scrollable if content exceeds height */
}
#run_button {
background-color: #fff; /* Dark button color */
color: black; /* White text */
border-radius: 10px;
padding: 10px;
cursor: pointer;
transition: background-color 0.3s ease;
margin-top: 15px;
}
#run_button:hover {
background-color: #333; /* Slightly lighter on hover */
}
"""
# Gradio interface with vertical alignment and fixed image input height
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
input_image = gr.Image(type="pil", elem_id="input_image")
run_button = gr.Button(value="Generate Prompt", elem_id="run_button")
output_caption = gr.Textbox(label="Womener AI", show_copy_button=True, elem_id="output_caption", lines=6)
run_button.click(
fn=generate_caption,
inputs=[input_image],
outputs=output_caption,
)
demo.launch(share=False)