Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,723 Bytes
6453bed ac1b901 6453bed ac1b901 496dbd8 ac1b901 6453bed 6b2baab 8a3405a d1db1da 9ad8bf0 f53d9ab cc4a3ff 8a3405a e1e11cc cc4a3ff 6453bed 6b2baab 8a3405a 6b2baab d1db1da cc4a3ff ac1b901 8a3405a 6453bed cc4a3ff 6453bed abba001 6453bed d1db1da 8a3405a d1db1da 5aff95e 6453bed 8a3405a 6453bed 8a3405a 6453bed 8a3405a cc4a3ff 8a3405a cc4a3ff 8a3405a cc4a3ff 6453bed 495f72e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import spaces
import gradio as gr
import re
from PIL import Image
import os
import numpy as np
import shutil
#shutil.rmtree("/home/user/app/.gradio/cached_examples/23")
import torch
from diffusers import FluxImg2ImgPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
def sanitize_prompt(prompt):
# Allow only alphanumeric characters, spaces, and basic punctuation
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
sanitized_prompt = allowed_chars.sub("", prompt)
return sanitized_prompt
@spaces.GPU(duration=120)
def process_images(image, image2=None,prompt="a girl",strength=0.75,seed=0,inference_step=4,progress=gr.Progress(track_tqdm=True)):
print("start process_images")
progress(0, desc="Starting")
# I'm not sure when this happen
if not isinstance(image, dict):
if image2 == None:
print("empty mask")
return image,None
else:
image = dict({'background': image, 'layers': [image2]})
if image2!=None:
#print("use image2")
mask = image2
else:
if len(image['layers']) == 0:
print("empty mask")
return image
print("use layer")
mask = image['layers'][0]
def process_img2img(image,mask_image,prompt="a person",strength=0.75,seed=0,num_inference_steps=4):
print("start process_img2img")
if image == None:
print("empty input image returned")
return None
generators = []
generator = torch.Generator(device).manual_seed(seed)
generators.append(generator)
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
print(prompt)
output = pipe(prompt=prompt, image=image,generator=generator,strength=strength
,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
# TODO support mask
return output.images[0]
output = process_img2img(image["background"],mask,prompt,strength,seed,inference_step)
print("end process_images")
return output,mask
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
with gr.Row():
with gr.Column():
image = gr.ImageEditor(height=800,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False, elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#fff"], color_mode="fixed"))
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
prompt = gr.Textbox(label="Prompt",value="a eyes closed girl,shut eyes",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
btn = gr.Button("Img2Img", elem_id="run_button",variant="primary")
image_mask = gr.Image(sources=['upload','clipboard'], elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None)
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row( equal_height=True):
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength")
seed = gr.Number(value=100, minimum=0, step=1, label="seed")
inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step")
#models = ["black-forest-labs/FLUX.1-schnell"]
#inpaint_model = gr.Dropdown(label="modes", choices=models, value="black-forest-labs/FLUX.1-schnell")
id_input=gr.Text(label="Name", visible=False)
with gr.Column():
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")
mask_out = gr.Image(height=800,sources=[],label="Mask", elem_id="mask-img",format="jpeg")
#btn.click(fn=process_images, inputs=[image, image_mask,prompt,strength,seed,inference_step], outputs =[image_out,mask_out], api_name='infer')
gr.Examples(
examples=[
#["images/00547245_99.jpg", "images/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.8,"images/00547245.jpg"],
#["images/00538245_paint.jpg", "images/00538245_mask.jpg","a beautiful girl,wearing t-shirt",0.7,"images/00538245.jpg"],
#["images/00207245_18.jpg", "images/00207245_18_mask.jpg","a beautiful girl,mouth opened",0.2,"images/00207245.jpg"]
]
,
#fn=example_out,
inputs=[image,image_mask,prompt,strength,image_out],
#outputs=[test_out],
#cache_examples=False,
)
gr.HTML(
"""
"""
)
gr.on(
triggers=[btn.click, prompt.submit],
fn = process_images,
inputs = [image, image_mask,prompt,strength,seed,inference_step],
outputs = [image_out,mask_out]
)
if __name__ == "__main__":
demo.launch()
|