import spaces import gradio as gr import re from PIL import Image import os import numpy as np import torch from diffusers import FluxImg2ImgPipeline dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device) def sanitize_prompt(prompt): allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]") sanitized_prompt = allowed_chars.sub("", prompt) return sanitized_prompt def convert_to_fit_size(original_width_and_height, maximum_size=2048): width, height = original_width_and_height if width <= maximum_size and height <= maximum_size: return width, height scaling_factor = maximum_size / max(width, height) new_width = int(width * scaling_factor) new_height = int(height * scaling_factor) return new_width, new_height def adjust_to_multiple_of_32(width: int, height: int): width = width - (width % 32) height = height - (height % 32) return width, height @spaces.GPU(duration=120) def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, progress=gr.Progress(track_tqdm=True)): progress(0, desc="Starting") if image is None or not hasattr(image, 'size'): raise gr.Error("Please upload an image.") def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4): generator = torch.Generator(device).manual_seed(seed) width, height = convert_to_fit_size(image.size) width, height = adjust_to_multiple_of_32(width, height) image = image.resize((width, height), Image.LANCZOS) output = pipe(prompt=prompt, image=image, generator=generator, strength=strength, width=width, height=height, guidance_scale=0, num_inference_steps=num_inference_steps, max_sequence_length=256) return output.images[0] output = process_img2img(image, prompt, strength, seed, inference_step) return output def read_file(path: str) -> str: with open(path, 'r', encoding='utf-8') as f: content = f.read() return content css = """ #demo-container { border: 4px solid black; border-radius: 8px; padding: 20px; margin: 20px auto; max-width: 800px; } #image_upload, #output-img { border: 4px solid black; border-radius: 8px; width: 256px; height: 256px; object-fit: cover; } #run_button { font-weight: bold; border: 4px solid black; border-radius: 8px; padding: 10px 20px; width: 100% } #col-left, #col-right { max-width: 640px; margin: 0 auto; } .grid-container { display: flex; align-items: center; justify-content: center; gap: 10px; } .text { font-size: 16px; } """ with gr.Blocks(css=css, elem_id="demo-container") as demo: with gr.Column(): gr.HTML(read_file("demo_header.html")) # Removed or commented out the demo_tools.html line # gr.HTML(read_file("demo_tools.html")) with gr.Row(): with gr.Column(): image = gr.Image(width=256, height=256, sources=['upload', 'clipboard'], image_mode='RGB', elem_id="image_upload", type="pil", label="Upload") prompt = gr.Textbox(label="Prompt", value="", placeholder="Your prompt", elem_id="prompt") btn = gr.Button("Generate", elem_id="run_button", variant="primary") with gr.Accordion(label="Advanced Settings", open=False): strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="Strength") seed = gr.Number(value=100, minimum=0, step=1, label="Seed") inference_step = gr.Number(value=4, minimum=1, step=4, label="Inference Steps") with gr.Column(): image_out = gr.Image(width=256, height=256, label="Output", elem_id="output-img", format="jpg") gr.HTML(gr.HTML(read_file("demo_footer.html"))) gr.on( triggers=[btn.click, prompt.submit], fn=process_images, inputs=[image, prompt, strength, seed, inference_step], outputs=[image_out] ) if __name__ == "__main__": demo.queue().launch(show_error=True)