import spaces import gradio as gr import re from PIL import Image import os import numpy as np import torch from diffusers import FluxImg2ImgPipeline dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device) def sanitize_prompt(prompt): # Allow only alphanumeric characters, spaces, and basic punctuation allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]") sanitized_prompt = allowed_chars.sub("", prompt) return sanitized_prompt def convert_to_fit_size(original_width_and_height, maximum_size = 2048): width, height =original_width_and_height if width <= maximum_size and height <= maximum_size: return width,height if width > height: scaling_factor = maximum_size / width else: scaling_factor = maximum_size / height new_width = int(width * scaling_factor) new_height = int(height * scaling_factor) return new_width, new_height def adjust_to_multiple_of_32(width: int, height: int): width = width - (width % 32) height = height - (height % 32) return width, height @spaces.GPU(duration=120) def process_images(image,prompt="a girl",strength=0.75,seed=0,inference_step=4,progress=gr.Progress(track_tqdm=True)): #print("start process_images") progress(0, desc="Starting") def process_img2img(image,prompt="a person",strength=0.75,seed=0,num_inference_steps=4): #print("start process_img2img") if image == None: print("empty input image returned") return None generators = [] generator = torch.Generator(device).manual_seed(seed) generators.append(generator) width,height = convert_to_fit_size(image.size) #print(f"fit {width}x{height}") width,height = adjust_to_multiple_of_32(width,height) #print(f"multiple {width}x{height}") image = image.resize((width, height), Image.LANCZOS) #mask_image = mask_image.resize((width, height), Image.NEAREST) # more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline #print(prompt) output = pipe(prompt=prompt, image=image,generator=generator,strength=strength,width=width,height=height ,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256) # TODO support mask return output.images[0] output = process_img2img(image,prompt,strength,seed,inference_step) #print("end process_images") return output def read_file(path: str) -> str: with open(path, 'r', encoding='utf-8') as f: content = f.read() return content css=""" #col-left { margin: 0 auto; max-width: 640px; } #col-right { margin: 0 auto; max-width: 640px; } .grid-container { display: flex; align-items: center; justify-content: center; gap:10px } .image { width: 128px; height: 128px; object-fit: cover; } .text { font-size: 16px; } """ with gr.Blocks(css=css, elem_id="demo-container") as demo: with gr.Column(): gr.HTML(read_file("demo_header.html")) gr.HTML(read_file("demo_tools.html")) with gr.Row(): with gr.Column(): image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB', elem_id="image_upload", type="pil", label="Upload") with gr.Row(elem_id="prompt-container", equal_height=False): with gr.Row(): prompt = gr.Textbox(label="Prompt",value="a women",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt") btn = gr.Button("Img2Img", elem_id="run_button",variant="primary") with gr.Accordion(label="Advanced Settings", open=False): with gr.Row( equal_height=True): strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength") seed = gr.Number(value=100, minimum=0, step=1, label="seed") inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step") id_input=gr.Text(label="Name", visible=False) with gr.Column(): image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg") gr.Examples( examples=[ ["examples/draw_input.jpg", "examples/draw_output.jpg","a women ,eyes closed,mouth opened"], ["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg","a women ,eyes closed,mouth opened"], ["examples/gimp_input.jpg", "examples/gimp_output.jpg","a women ,hand on neck"], ["examples/inpaint_input.jpg", "examples/inpaint_output.jpg","a women ,hand on neck"] ] , inputs=[image,image_out,prompt], ) gr.HTML( gr.HTML(read_file("demo_footer.html")) ) gr.on( triggers=[btn.click, prompt.submit], fn = process_images, inputs = [image,prompt,strength,seed,inference_step], outputs = [image_out] ) if __name__ == "__main__": demo.launch()