Spaces:
Running
Running
import streamlit as st | |
import requests | |
import os | |
import base64 | |
from PIL import Image | |
from io import BytesIO # Correctly import BytesIO from the io module | |
# Set page title and layout | |
st.set_page_config(page_title="Image Caption Generator", layout="centered") | |
# API key from environment variable | |
API_KEY = os.environ.get("NEBIUS_API_KEY") | |
if not API_KEY: | |
st.error("API key not found. Please set the `NEBIUS_API_KEY` environment variable.") | |
# Function to call Nebius API | |
def generate_caption(image_base64, api_key): | |
api_url = "https://api.studio.nebius.ai/v1/chat/completions" | |
headers = {"Authorization": f"Bearer {api_key}"} | |
payload = { | |
"model": "Qwen/Qwen2-VL-72B-Instruct", | |
"messages": [ | |
{ | |
"role": "system", | |
"content": """You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 75 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering].""", | |
}, | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "Write a caption for this image"}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, | |
], | |
}, | |
], | |
"temperature": 0, | |
} | |
try: | |
response = requests.post(api_url, json=payload, headers=headers) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
st.error(f"API Error: {response.status_code}, {response.text}") | |
return {"error": response.text} | |
except Exception as e: | |
st.error(f"An exception occurred: {e}") | |
return {"error": str(e)} | |
# File uploader for image | |
uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
if uploaded_image and API_KEY: | |
# Convert the image to base64 | |
image = Image.open(uploaded_image) | |
buffered = BytesIO() # Use BytesIO from the io module | |
image.save(buffered, format="PNG") | |
image_base64 = base64.b64encode(buffered.getvalue()).decode() | |
# Show the uploaded image | |
st.image(image, caption="Uploaded Image", use_container_width=True) | |
# Add a button to trigger caption generation | |
if st.button("Generate Caption", use_container_width=True): | |
st.write("Generating caption...") | |
result = generate_caption(image_base64, API_KEY) | |
# Extract and display the generated caption | |
if "error" in result: | |
st.error(f"Error: {result['error']}") | |
else: | |
try: | |
# Extract the caption from the response | |
caption = ( | |
result.get("choices", [{}])[0] | |
.get("message", {}) | |
.get("content", "No caption generated.") | |
) | |
st.subheader("Generated Caption") | |
# Use a text area for the caption so it can be copied easily | |
caption_area = st.text_area( | |
"", caption, height=100, key="caption_area", disabled=True, | |
max_chars=2000, # Limit number of characters for better display | |
help="The generated caption will appear here.", label_visibility="collapsed" | |
) | |
except Exception as e: | |
st.error(f"Error processing the response: {e}") | |
else: | |
if not API_KEY: | |
st.warning("Please set the `NEBIUS_API_KEY` environment variable.") | |
else: | |
st.info("Please upload an image.") | |
# Customizing CSS for the text area and button (with blue glowing effect for button) | |
st.markdown( | |
""" | |
<style> | |
/* Custom styles for the text area */ | |
.css-1w6p6e5 { | |
background-color: #f0f0f5; | |
color: #333333; | |
font-size: 16px; | |
padding: 10px; | |
} | |
/* Glowing blue button styling */ | |
.stButton>button { | |
background-color: #007bff; /* Blue color */ | |
color: white; | |
font-size: 16px; | |
border: none; | |
border-radius: 4px; | |
padding: 12px 24px; | |
cursor: pointer; | |
box-shadow: 0 4px 6px rgba(0, 123, 255, 0.6), 0 0 10px rgba(0, 123, 255, 0.8); | |
transition: all 0.3s ease-in-out; | |
} | |
.stButton>button:hover { | |
background-color: #0056b3; /* Darker blue on hover */ | |
box-shadow: 0 4px 6px rgba(0, 123, 255, 0.8), 0 0 20px rgba(0, 123, 255, 1); | |
} | |
/* Text area styling */ | |
.stTextArea>div>textarea { | |
background-color: #f5f5f5; | |
color: #333; | |
font-size: 14px; | |
padding: 10px; | |
border-radius: 5px; | |
} | |
.stTextArea>div>textarea:disabled { | |
background-color: #e0e0e0; | |
color: #666; | |
} | |
/* Centering elements */ | |
.css-1v3fvcr { | |
justify-content: center; | |
display: flex; | |
} | |
.css-ffhzg6 { | |
text-align: center; | |
} | |
</style> | |
""", unsafe_allow_html=True | |
) | |