import streamlit as st import base64 import os import requests from PIL import Image from io import BytesIO # Function to compress and resize the image before base64 encoding def compress_and_resize_image(image, max_size=(1024, 1024), quality=85): img = Image.open(image) img.thumbnail(max_size) # Resize image while maintaining aspect ratio with BytesIO() as byte_io: img.save(byte_io, format="JPEG", quality=quality) # Save with reduced quality byte_io.seek(0) return byte_io # Function to convert uploaded image to base64 def convert_image_to_base64(image): compressed_image = compress_and_resize_image(image) image_bytes = compressed_image.read() encoded_image = base64.b64encode(image_bytes).decode("utf-8") return encoded_image # Function to generate caption using Nebius API def generate_caption(encoded_image): API_URL = "https://api.studio.nebius.ai/v1/chat/completions" API_KEY = os.environ.get("NEBIUS_API_KEY") headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } payload = { "model": "Qwen/Qwen2-VL-72B-Instruct", "messages": [ { "role": "system", "content": """You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 75 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering].""" }, { "role": "user", "content": "Write a caption for this image" }, { "role": "user", "content": f"data:image/png;base64,{encoded_image}" # This is where the image is passed as base64 directly } ], "temperature": 0 } # Send request to Nebius API response = requests.post(API_URL, headers=headers, json=payload) if response.status_code == 200: result = response.json() caption = result.get("choices", [{}])[0].get("message", {}).get("content", "No caption generated.") return caption else: st.error(f"API Error {response.status_code}: {response.text}") return None # Streamlit app layout def main(): st.set_page_config(page_title="Image Caption Generator", layout="centered", initial_sidebar_state="collapsed") st.title("🖼️ Image to Caption Generator") uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file: # Display the uploaded image st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) if st.button("Generate Caption"): # Convert the uploaded image to base64 with st.spinner("Generating caption..."): encoded_image = convert_image_to_base64(uploaded_file) # Debugging: Ensure the encoded image is valid and not too large st.write(f"Encoded image length: {len(encoded_image)} characters") # Get the generated caption from the API caption = generate_caption(encoded_image) if caption: st.subheader("Generated Caption:") st.text_area("", caption, height=100, key="caption_area") st.success("Caption generated successfully!") if __name__ == "__main__": main()