Spaces:
Running
Running
File size: 1,882 Bytes
17cf727 f214084 17cf727 50f84a5 17cf727 e7f458d f214084 17cf727 6ec4fc2 e7f458d f214084 e7f458d 17cf727 6ec4fc2 17cf727 6ec4fc2 17cf727 bd44775 17cf727 79a3f23 b078cdf 99f3214 79a3f23 f214084 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from huggingface_hub import InferenceClient
import gradio as gr
import time
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Your system prompt
SYSTEM_PROMPT = "You are a prompt enhancer and your work is to enhance the given prompt under 100 words without changing the essence, only write the enhanced prompt and nothing else."
def format_prompt(message, history=[]):
prompt = "<s>"
prompt += f"[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]" # Add the system prompt here
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
# Append a timestamp to ensure uniqueness
timestamp = time.time()
prompt += f"[INST] {message} {timestamp} [/INST]"
return prompt
def generate(prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
)
formatted_prompt = format_prompt(prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output.strip('</s>')
return output.strip('</s>')
with gr.Blocks() as demo:
input_text = gr.Textbox(placeholder="Paste your copied prompt here...", lines=2, max_lines=2, label="Paste Your Prompt Here...")
submit_button = gr.Button("Generate")
output_text = gr.Textbox(label="Output", interactive=True, lines=10)
submit_button.click(fn=generate, inputs=input_text, outputs=output_text)
demo.launch()
|